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Boundary-Layer Theory (Contd.)

We discussed boundary layer  displacement  thickness  yesterday. Similarly, due  to  the

presence of the boundary layer, the momentum transport through the flow will also be

reduced that is the momentum; that could have flown in the absence of the boundary

layer, we will now be little less that it will be able to flow. So, there will be defect in

momentum transport or deficit in momentum transport.
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We will call it defect in momentum transport and boundary layer momentum thickness.

Now what is this? loss in momentum transport, how much? How much it will be? Loss

in mass transport we have already seen, rho into e v minus u that rho, of course we



dropped, but in actual calculation we can keep rho. See this will be straight away if you

remember the loss in mass or volume transport each what we did yesterday zero to delta,

this is the loss momentum transport, in mass transport. So, momentum transport will be

see, these multiplied by the velocity u. And once again this, that rho we have dropped,

because we have considering incompressible flow that rho we have dropped, actually

there will be a rho also. So zero to infinity, or if you want to keep that rho, let us keep

rho. Because these density is constant we have not taken it inside the integration, if you

want consider density variation then these density will be there inside, here rho e u e

minus rho u. And if we assume certain thickness in the inviscid flow, across which this

momentum can be transported. So what will be that thickness, think about an equivalent

inviscid flow having certain thickness through which this amount of momentum is being

transported. So how much will be the momentum transport in the inviscid flow, if we

consider a thickness of say eight, how much it will be, or what would be the momentum

transport  per  unit  thickness  of  the  fluid  layer, straight  away rho u e  square.  So this

amount of momentum…

(Refer Slide Time: 06:03)

So we can write that, rho u e squared theta equal to what we said that, if we consider an

equivalent inviscid flow, then through a layer of thickness theta, similar amount of or

same amount of momentum could be transported, that is as if we have lost a thickness of



theta, due to the presence of the boundary layer as for as the momentum transport is

concerned. And mathematically that, this rho u squared theta is this or we have theta,

which is  called the momentum thickness this is  what is the definition of momentum

thickness.

So we have already defined delta star, which is one minus u by u e; integration of one

minus u by u e and the momentum thickness, which is integration of u by u e into one

minus u by u e. If the density is variable, can you say what type of change will be there

in this definitions, if the density is a variable, let us say delta star. Delta star we have

already defined, the displacement thickness. If the density is a variable one by rho, no

see this will be simply rho u by rho e u e. Because what will be defect in mass flow, in

the inviscid flow or the mass flow would have been rho e u e, in the viscous flow, the

mass flow or the density changing the mass flow would have been rho u. So it is the

difference of that, rho e u e minus rho u, that would have been the mass flow defect,

integrated across the boundary layer, rho e u e minus rho u. And then, it would have

come one minus rho u by rho e u e, this definition. In the momentum thickness also, this

u by u e, this will be changed to rho u by rho e u e, because that is again coming from

that mass flow defect multiplied by the velocity for the momentum, that will not change.

Anyway similarly, you can also define an energy thickness, we are not going to use it,

but an energy thickness…you can defined an energy thickness also like this.

And a very important parameter, which is called the shape parameter or shape function is

defined as delta star by theta, the ratio of displacement thickness to momentum thickness

is  called  the  boundary  layer  shape  parameter…  And  as  it  happens,  that  this  shape

parameter  is  always  greater  than  one;  that  is  delta  star  is  always greater  than  theta;

displacement thickness is always more than momentum thickness.
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Now since there is a velocity difference or velocity is continuously varying across the

boundary layer, so there is also viscous shear stress acting on the body surface. So how

much is the shear stress acting…the shear stress acting on the plate, tau x y of course, it

is we have only x and y, so tau x y, we have denoting is tau w, that is shear stress on the

wall, that w stands for wall. How much is it, what is tau x y, if you remember that earlier

definition…if you remember the definition of that stress tensor sigma i j equal to mu into

du by dx j plus du j dx i minus two by three mu delta i k and divergence u, that was of

course, for general case. Now you can simplify how much it is, you can check it and it

will come simply as mu du dy; will come as mu du dy and since we are interested only at

the shear stress on the wall, that is mu du dy at wall, that is at y equal to zero. The value

of du dy on the wall and on this, shear stress is integrated over the surface, that gives the

total frictional force or the frictional resistance to the flow or frictional drag, so you get a

drag force. So how much is; before that lets define a skin friction coefficient and what

we have seen that, if we integrate the shear stress over the surface, we get the resistance

force or the viscous drag force, frictional drag force that is not the only drag, there might

drag  from different  sources,  so  that  is,  we  will  not  call  it  drag  force,  but  only  the

frictional drag force. 

And similarly, if we integrate this skin friction coefficient, then we will get the total skin



friction coefficient or the viscous drag coefficient; skin drag coefficient. So we can write

total skin friction coefficient, how much it will be; for one surface. Usually when the

body is emerged it will have two side, two surface: upper surface and lower surface and

both will offer these resistances. So for the total skin friction coefficient, that should be

multiplied  by  two,  but  now  we  are  considering  one  surface,  so  this  is  how  much;

integration of this over the entire length, the length we take what did you take l but, small

l or capital L anyway, so that is the length of the plate, we call it c capital f. So if both

surface are in contact with the flow, then this will be multiplied by two and that is called

the boundary layer friction drag, boundary layer skin friction drag.

Remember, this is not the only contribution to the total drag, this boundary layer has

another  contribution  to  drag,  this  is  the  direct  viscous  contribution  coming  through

friction. But in addition, due to the presence of the boundary layer, the overall pressure

distribution will change slightly, not very large change, but it will change to some extent.

So whatever the pressure distribution acting on the body, due to the presence of boundary

layer, that  pressure  distribution  will  be  slightly  modified  and that  modified  pressure

distribution will  also give a drag force.  So due to the boundary layer, there are  two

contribution to drag force: one coming through pressure, one coming through viscous

stress. So that coming through the viscous stress, that of course we can get directly from

the boundary layer solution. But what is coming through the pressure distribution, that

we need to solve the two flows together in a composite manner, which of course cannot

be done analytically. Except perhaps for very simple flat plate case, then also it is not

possible even analytically for that.  So we cannot give a formula or anything for that

boundary layer pressure drag. Of course, there are other contribution to drag as well,

which we mentioned earlier that; when body is finite, that is a three dimensional body,

then there is another contribution to drag force, which will be discuss in later in your

other courses in aerodynamics called as induced drag or lift induced drag, which actually

is  basically  a  component  of  the  lift  acts  as  a  drag  and  then  at  a  very  high  speed;

particularly in supersonic flow, there is another type of drag, which is known as wave

drag.  So these are different contribution to drag and together give the complete drag

force. So what we have got here now is the boundary layer skin friction drag, in addition

there is a boundary layer pressure drag and these two together sometime called as the



form drag, this boundary layer skin friction drag and the boundary layer pressure drag

together, often called as the form drag.
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Anyway, now let us come back to the boundary layer equations once again, the boundary

layer  equations…we have seen that  the boundary layer  flow can be solved by these

approximate form of the navier stokes equations.

So these are the two equations, that are required to be solved; for solving the boundary

layer problem subjected to the boundary condition, which is the no slip condition on the

solid wall, the merging of the inviscid and viscous flow at the age of the boundary layer

and in addition and initial condition at certain x location, we have to specify how u is

varying with y. At certain x location, how u is varying with y, that is to be specified. So

find all these are specified, theoretically these can be solved and there are two unknown

here: u and v with two equations, they can be solved. The pressure, here in this equation

is taken as known, from the solution of the outer inviscid flow.

Now let us see, how that is; so at the age of the boundary layer, this equation is satisfied.

Now at the age of the boundary layer what it is; boundary layer momentum equation, at

the age we have du e dt plus u e; du e dx, we know that u e is not a function of y; u e is



not a function of y. We can write it here; v e and this is zero. This is also zero. So we get,

this now we can substitute in this equation, in the x momentum equation.
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See, if we substitute this in the x momentum equation what do you get.

Now we will integrate this equation across the boundary layer, we keep this term on one

side, the rest in other side; integrating across the boundary layer. See this and this can be

combined, this and this; combination of these two have written in this manner and in this

v term; we have inserted one, included one u e, but that is all right, since d dy of that is

zero; that u e is not the function of y, so we can take it for convenience.

What is the integration of this one, first one; integration of this is simply du dy. Now du

dy, for any value of y greater than delta is zero, u is not changing once y is more than

delta. So, at the upper limit the value is zero, in the lower limit; it is du dy at y equal to

zero or du dy wall. what is that; mu into du dy that is, that skin friction by rho, tau w by

rho. So the first term is becoming, the one negative sign will send or let us write first one

line, this is what it is coming, for y equal to zero, that zero we are replacing by wall. And

this is what is; and the right hand side remain as it is or what do we have, tau w by rho.



The first term is simply u e into delta star. Now we have one v here in this equation, we

can replace this v using the continuity equation.
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Say we will do that first, let us write it once more, tau w by rho equal to d dt of u e delta

star. We will also take the second term, that is the first term in this three integration, du e

dx is not a function of y, so it comes out of the integration. So what it remains is, u e

minus u with respect to it and what is u e minus u, again u e into delta. So these term

becomes u e into delta star into du e dx. So there is no point in writing of any partial

derivative here, because u e is not a function of; but anyhow we are considering unsteady

flow, so u e can be a function of time, it is not a function y. Their next two terms of

course, let us keep it now. If we integrate the continuity equation across the boundary

layer. Now let us consider this integration, v into this.

This integration can be carried out fully, the result is zero to infinity, this integration is v

into u e minus u. Now dv dy minus du dx from continuity equation; dv dy is minus du dx

from the continuity equation. So we can put it du dx and the minus we can make it plus,

what is this; at infinity, u e minus u is zero and at zero v is zero. So this is zero, this part

is; at infinity u e minus u is zero; at zero v is zero. So this last integral become this. Now

you can combine these two.



(Refer Slide Time: 40:41)

So we can  now write… You see  this  is;  this  can  be  combined very  easily. Divided

throughout by u e squared… This equation, which is an integral form of the boundary

layer momentum equation, an integral form of the boundary layer equation is known as

Von  Karman  momentum  integral  equation  or  boundary  layer  momentum  integral

equation.
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If we consider steady flow, then this equation becomes. If we consider steady flow then

all the derivatives will be ordinary derivatives, they are only function of x; not function

of y, write d theta dx plus H plus 2, look to the second term, which contains that du e dx.

You  can  see  on  this  side.  Now  if  you  look  to  that  momentum  integral  equation;

momentum equation on the edge of boundary layer, this one, for a steady flow u e du e

dx is what is the pressure gradient; so the second term here represent pressure gradient.

So if there is a flow or there is no pressure gradient, so like a flat plate flow in which

there  is  no  pressure  gradient  in  the  stream  wise  direction.  The  flow  is  everywhere

uniform. So in a zero pressure gradient flow, we have a very simple relation this equal to

this. So this is the equation of the flat plate boundary layer; this is equation for flat plate

boundary layer in the integral form. Of course, in the differential form, we will have this

equation; in the differential form, this is this equation with this term dropped.

So boundary layer can be solve either this differential equation approach or we will try to

solve the differential equations or we try to solve these integral equation. Now there are

solutions available for either format. In the differential form, we can get solutions for

some simple flow problems, for there is no pressure gradient or the pressure gradient can

be expressed  in  a  very  simple  form.  Otherwise  of  course,  you cannot  have  analytic

solution. So solution of this boundary layer equation in the differential form, for simple

cases,  with  zero  pressure  gradient  or  some  specified  pressure  gradient;  pressure

distribution  or  specified  free  stream.  We will  postpone  it  to  later  courses.  Even  the

solution  in  that  integral  form also  will  differ,  we  will  assume that  somehow, if  the

solution is known, then how to find the other parameters. The solution as you can see

from the differential form, the solution will be how u or v varying in the boundary layer;

within the boundary layer. The variation of u at a fixed x with y; variation of u with y at a

fixed x location is  called the velocity  profile.  That  is  how the velocity changes at  a

particular location, across the boundary layer how the velocity changing that velocity

profile.

So if we solve this the velocity profile is the solution that is what we will likely to get. So

we will not discuss how to get the velocity profile but rather we will assume that the

velocity profile is known and then how to handle that result in this case. So that we will

do in the next class, assuming some simple velocity distribution; velocity profile, what



will be the various other important quantities that we are interested in. 


