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Last, we have discussed about the development of boundary layer, how a boundary layer flow

develops from the start of the motion. And we have also seen that the distance to within,

which the viscous effect. That is the diffusion of vorticity or velocity occurs; is of the order of

square root of or inverse square root of Reynolds number. And on that basis, we have made

some  order  of  magnitude  analysis  and  derived  approximate  form of  the  boundary  layer

equations or what is known as the boundary layer approximations; the equations that are valid

for boundary layer. We would like to see the same equations again, through normalization;

we would like to normalize the equations properly. 
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So, let us have the navies stokes equations, we will once again derive the equations so, this is

actually not nothing new, whatever we have done yesterday, we will be doing the same thing.

But, using a little different approach, we will make this approximation through normalization.

We  have  the  incompressible  navies  stokes  equations  which  can  be  written  as,  the  x



component of momentum equation which is d u d t plus, the y component of momentum

equation and the mass conservation or volume conservation equation or continuity equation. 

Now we would like to normalize or non- dimensionalize these equations, now once again, we

again  earlier  once  earlier  we  non-  dimensionalize  these  equations,  where  we  used  some

characteristic length and characterise each of these term. If you remember for velocity, we

used u infinity and for x y z coordinate length, we used l. But, in discussing boundary layer

equations,  we  have  seen  that,  even  though  the  characteristic  length  in  the  stream  wise

direction is l; the characteristic length in the normal direction is not really l. It is of the order

of inverse square root of Reynolds number. So, this time, we will use appropriate length scale

and velocity scale to normalize these equations. 
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And we normalize or non- dimensionalize these equation as follows, say the non dimensional

x prime is as usual x by L; where L is the reference length in the stream wise direction. y

prime is not y by L but, i to the power minus half into L. Because the length in the normal

direction or the thickness of that boundary layer is, of the order of inverse square root of

Reynolds  number,  so  that  we  that  is  y  by  delta,  where  the  delta  is  the  boundary  layer

thickness of the order of the boundary layer thickness. u bar will make it, U by U e where, as

before that any parameter with a subscript e means, that it is the value at the edge of the

boundary layer or it is the inviscid flow solution. 



The inviscid flow solution just like y prime and for pressure, we normalize following this and

t of course, you can prime of course, you can think that t by L by U e. Now if we substitute

these parameters, what happens to the equations? If we substitute these in the equations, the

navies stoke equations which we have written it here. 

We substitute  this  non  dimensional  parameter  here,  what  we  will  be  getting  is.  The  x

component of momentum equation in this normalized form remains almost the same, only

one  by  R  e  comes  here  and  the  other  terms  have  no  coefficient.  The  y  component  of

momentum equation comes as and the continuity came, remain as it is.

Now see if we assume that Reynolds number is very large, so that one by R e approaches zero

and in that situation, all the derivatives are finite then, we can see that from here. We can

neglect all these terms in this equation, this term and in this equation all these terms; except

this the pressure. 
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So, what do you get one thing is clear from here. That the equation for very large Reynolds

number, do not contain the parameter Reynolds number. There is no Reynolds number in the

equations. See it is obvious that the solution, at least in this form solution of these equations

where your parameters are u prime, b prime, p prime will  not contain Reynolds number.

Because in the Reynolds number, do not appear in the equations, neither do they appear in the

boundary conditions. So in the limit of very large Reynolds number, the Reynolds numbers



do not appear in the equations in the non dimensional form, neither do they appear in the

boundary condition.

The boundary condition is simple that on the solid wall, there is no slip at the edge of the

boundary layer. The two solutions  will  merge smoothly and one more thing,  that  is  also

required to solve these equations. That is at some x location, at some location- x location, you

have to provide the solution. For a steady flow case, at some location that is at some x, you

have to satisfy give the solution, then you can get the solution for x greater than that value. If

your solution is given at say, x equal to x naught, then you can get the solution for x greater

than x naught. That is because of the nature of the boundary layer equations, the boundary

layer equations in this form or the form that we had let us say, they are parabolic in nature. So

you have to give an initial solution.

So, if we consider steady flow where there is only x and y; some x location is an initial

condition. At some x location, you have to give the solution only. Then you can find the

solution not so at low Reynolds number, but at very high Reynolds number, the solutions do

not contain any reference to Reynolds number. And even if the Reynolds number changes

something, the solution will remain same meaning. Let say as an example, this may not be

large but, usually what you find is quiet large enough. For airfoil type of problems, whether

your Reynolds number is say ten to the power seven or ten to the power eight or ten to the

power nine; the solution is more or less same.

But, if it is ten to the power four or ten to the power five or ten the power six in that range, it

changes or even smaller than that, it changes. But, when the Reynolds numbers reach to that

limit,  the  solutions  do  not  change.  These  equations  you  have  considered  or  derived

considering that the wall is straight for three dimensional case, you can extend the equation

very easily in the same form; you can do it yourself without any difficulty.

For curved wall case that normal momentum equation that is d p d y equal to zero that needs

a little modification. When the wall curvature is considerable, not small curvature like the

curvature that an air foil has, for that type of curvature is not required. But, if the wall has

very large curvature, then that equation needs to be changed and the approximate form of that

equation will become …
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If the curvature is small enough then, this is not required. You can set straight, you make it

zero; d p d y equal to zero. But if the curvature is large, then one need to use this equation,

replace this d p d y equal to zero. 

Now, so  the  final  form  of  the  boundary  layer  equations.  You  are  again  using  that  the

dimensional form, not the non- dimensional form. So these are the boundary layer equation,

if you look to the equations compare to the full navies stokes equations, they are definitely

much simpler, compare to the original equations, the original navies stokes equations when

you compare to them, these equations are definitely simpler. However, if you compare to the

inviscid flow case, where the only equation is Laplace phi equal to zero. Obviously compare

to that, these are difficult. 

We now have three separate equations, remember we cannot use velocity potential here. This

is a rotational flow; the boundary layer flow is rotational flow. So phi or the velocity potential

is not defined. 

Not only that, within the boundary layer, you cannot even use you are so called Bernoulli’s

equation;  that  p plus half  rho u square equal to  constant;  that  cannot  be used within the

boundary layer. You can use it at the edge of the boundary layer and outside the boundary

layer, but not within the boundary layer. Within the boundary layer which is rotational flow,

so if you want to use p plus half rho u square that constant will change from streamline to

streamline. Can you say that what will happen to the total pressure within the boundary layer?



Within the boundary layer, what will happen to the total pressure? We already have d p d y

equal to zero meaning the static pressure, p is remaining constant within the boundary layer,

as you move from the edge of the boundary layer to the wall. 

Considering a simple case say this, say this is the edge of the boundary layer and accelerative

view. So the pressure is p is constant in this part,  at  any point here or if you have large

number of points at each of these points p is same, the static pressure is same. What will

happen to the total pressure? As you move to the wall from the edge of the boundary layer, as

we move to the wall,  what happens to the total  pressure? This is very simple question it

decreases total pressure is in an inviscid flow, the total pressure is p plus half rho u square; p

is constant. And u we know is decreasing, as we move to the wall, u is decreasing. So half rho

u square is decreasing, so the total pressure or stagnation pressure is decreasing as we move

to the wall, stagnation pressure is decreasing.

 In an inviscid flow, the stagnation pressure always remain constant, in an inviscid flow the

stagnation pressure always remain constant, it does not change. But in the viscous flow, we

see that the stagnation pressure changes and as you move from the edge to the wall,  the

stagnation pressure decreases. 

Now before we start thinking of solving this equation, let us look to some other boundary

layer effect. Due to the presence of boundary layer over a solid wall, consider again a flat

plate case. Due to the presence of the boundary layer, what happen? The velocity from the on

the wall is zero; it gradually increases and at the edge of the boundary layer, it reaches the

inviscid flow solution after that of course, it remain same. 

If there would have been no boundary layer, then for the from the plate surface to infinity,

everywhere there were been inviscid flow solution. So however in this cases you see that,

there is a small region where the velocity is less than what it would have been in an inviscid

flow. 
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Agreed? If we had an inviscid flow, say if would have an inviscid flow, say this is the plate.

Everywhere the flow velocity each, so the inviscid flow solution. For all this part, our flow

velocity each, let us call it that inviscid flow solution u v. You know, our viscous flow, in our

viscous flow the velocity is zero on the wall and then, increasing gradually and then. So, if

you consider this up to certain distance, the velocity has decreased and then it has increased

and remains constant. But, in this part the velocity is smaller. Can you see now that due to the

presence of this boundary layer or due to this viscous effect, the total mass flow will be little

less in this case, the total mass flow will be little less in this case. See that there is a deficit or

defect in the total mass flow in an incompressible flow mass flow is equivalent to volume

flow. 

So you can say that, there is a deficit of volume flow or volume flux whatever it is. Actually

it is mass flow but, since incompressible flow, mass flow is analogous to volume flow and

how much is that? How much is the mass flow defect or volume flow defect? 

Student: (( )) what is this left hand side? Left hand side can be integrated explicitly. 
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V at delta, V at zero is zero. V at zero is zero, so V at delta that equal to zero; the right hand

side is zero, right hand side bring it in the form of delta star. and since we are integrating

across y. Since we are integrating across y, then these quantities are no longer function of y.

So these derivatives we can write as an ordinary derivative. Yes, what you have got?

Student: A into delta star i.

Yes.

Student: V into delta star minus.

V e. how V e is come here?

Student: U e.

U e.

Student: Into delta star minus delta.

U e into delta star minus delta. How you got the delta star minus delta? From the equation of

volume flow that is. Since you have got the delta star, you must have brought in U e also

here. And once it is U e minus U that integration you have got the limit can be straight way

extended to infinity. A definitely you have done it, because you have got delta star make it U

e minus e U, extend the integration to infinity and the constant term that we are using that is



derivative is zero. You are reading a constant term here know to get it delta star form. You are

reading a constant here and the derivative of that constant is zero minus what? U e into.

Student: Delta U into delta.

Why delta? Why delta is a constant, it is not delta; it is not an, it is not delta, where is delta

coming? Let us say this is this integration U e- d y extended and that constant derivative of

that constant is zero. So eventually, this is what this is or it becomes? Now see, this is can be

thought  of  in  another  way. V e-  is  the  normal  component  of  velocity  at  the  age  of  the

boundary layer or where the inviscid flow solution starts. So this happens to be the boundary

condition for the inviscid flow.

So, our original inviscid flow boundary condition was a zero normal flow, V is zero on the

flow, U is anything V is zero, now what we have got? U is still anything but for V, we have

got something which is related to the boundary layer. So in other way that the effect of the

boundary layer is to modify the normal boundary condition and since a normal flow is added.

So it is equivalent to a source distribution as, if a source is distributed on the wall.

So, this is also another effect so these are two alternative. This is the alternative effect to the

inviscid flow, the inviscid flow will see either way, that either that the wall has now got a

thickness or the wall has been displaced by a distance delta star or it will see that there is an

additional source distribution placed on the plate whose strength is given by this .

So, if as we mentioned earlier, that in an interacting situation where one affects the other

which is of course, the natural case that the inviscid flow affects the viscous flow and viscous

flow  in  turn  affects  the  inviscid  flow.  Either  of  these  two  approach  is  to  be  used  for

interaction that is say, you are solving viscous flow by this approach, first  you solve the

inviscid  flow using  a  zero  normal  boundary  condition  at  this  stage.  You  do not  have  a

boundary  layer. You find  the  pressure  distribution  or  velocity  distribution  of  the  surface

which is to be treated as, the velocity or pressure on the age of the boundary layer using that

velocity and pressure, you now solve the boundary layer equation.

Once the boundary layer is solved, you will find the delta star or this quantity, either of these

two. You may use delta star that means then you change the thickness of your body at delta

star  and  recalculate  you  are  inviscid  flow  on  that  new  body,  again  using  zero  normal

boundary  condition.  Alternately,  you  use  another  source  distribution  at  another  source



distribution which is given by this but, your body remains the same, body remain as it was

earlier.  But,  your  source  distribution  has  changed  and  this  is  the  way  to  proceed  until

convergence.

Now this is what you considered a defect in mass flow similarly, as you can understand that it

will  create  defect  in  momentum  flow  as  well  as  energy  flow.  Consequently  there  is  a

thickness associated with momentum defect as well as energy defect. 

So there is various type of boundary layer thickness; this is displacement thickness. Then if

you consider a momentum deficit, there will be a momentum thickness; then if you consider

energy deficit its (( )) be taken as energy effect. If there is a temperature variation taken into

account, then you will get a thermal boundary layer where temperature will change. Then that

thermal boundary layer has its own length or own thickness. So we will consider a few more

cases and then perhaps look for solution or some other approaches.


