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So, we have seen that for flow at very high Reynolds number the viscous stress term in the

equation of motion can be neglected when we compared to other terms and the flows can be

considered inviscid. This you have seen from our dimensional analysis of the equation of

motion. Of course, we non dimensionalize the incompressible flow or the constant density

flow equation but, this is even true if we consider the full compressible flow equation that

when the reynolds number is very high the viscous force term present in the equation of

motion can be neglected in comparison to the other terms. This term is much smaller than the

other term present in the equation. 

The Reynolds  number  which you have  defined as  a  characteristic  velocity, we took it  u

infinity I think, some characteristic length divided by the fluid viscosity or also quite often

written like this. Also this is a ratio of the inertia force and viscous force. So, a very high



Reynolds number means that the inertia force are much larger than the viscous force. That the

ratio of the inertia force and viscous force is given by this term that can be easily seen that the

inertia force term in this equation is this term, this is the inertia force term and this is the

viscous force term. And again if you take the order of magnitude the inertia force you can

take any term in the inertia force there is either rho d u d t or say rho u d u d x.

 The result is the it is rho u square by L, the order is rho u square by L whether you take rho d

u d t because t is again of order of L by u. So, rho u d u rho d u d t or rho u d u d x any of

these term that gives its order rho u square by L and the viscous force here you can see the

order is mu u by L square. Say again the ratio is this Reynolds number. So, a very high

reynolds number flow implies that the inertia forces are much larger than the viscous forces

and under such condition as you say that this term can be dropped from the equation and. 

So, high r e this implies 
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and the equation of motion then can be written as which we called that these equations are

known as Euler’s equations momentum conservation for an inviscid fluid or inviscid flow. As

far  as  mathematical  difficulty  of  this  equation  is  concerned  it  remains  almost  the  same

because the difficulty in solving these equations comes beca[use]- form the nonlinearity of

the equation and which is present again here also. However, we see a very important outcome

of this simplification. When you neglect the viscous term from these equation, the equation

reduces by one order. 



The original Navier-stokes equations a second-order  equation while Euler’s equations are

first-order  equation  and  the  effect  is  that  the  Navier-stokes  equation  needs  2  boundary

condition while this needs only 1 boundary condition. That means we cannot satisfy the that

two boundary condition if you solve Euler’s equations and the boundary conditions for most

important problem of flow over any body as we said that on the surface there will be no slip,

that there is no relative velocity which is expressed that normal component of the relative

velocity as well as the tangential component of the relative velocity both are zero. If we make

this approximation at high Reynolds number that the flow is inviscid then we can satisfy only

one of these. 

We can satisfy that the normal component of the relative velocity is 0 but, we cannot satisfy

that normal component of tangential velocity is 0. Now, let see what actually happens in the

physical problem considering a physical problem let see what happens. Just think about we

have a uniform flow. In uniform flow all the streamlines are parallel and straight lines and let

say at we call that time instant t equal to 0 at that at time t equal to 0 we place say as simplest

possible body consider just a flat plate, we place a flat plate in that flow in the uniform flow.

Now, this flat plate will occupy the position of one of the streamline when you place it in the

flow. Now, before the flat plate was placed along that streamline the flow velocity was say u

infinity. 

Now, the instant we place the flat plate there because of that requirement of no slip condition

on the  surface  of  the  flat  plate  which  was earlier  a  position  of  the  streamline,  the  flow

velocity will there become 0. Now, on the adjacent streamline which is at a distance of 0 plus,

the flow velocity still remains that u infinity. So, at t equal to 0 we have let say where we

place the flat plate we call that thus some of the x axis so that is y equal to 0. At y equal to 0

we have flow velocity u infinity at t equal to 0 plus at y equal to 0 the flow velocity becomes

0 but, at y equal to 0 plus the flow velocity still remains u infinity. Now, what does it mean

that there is a velocity gradient d u d y of the order of infinite because over a distance of 0 the

flow velocity change from 0 to u. 

Now, what is d u d y? d u d y you see the if we component of the vorticity the omega z is d u

d y minus d v, d x or d v, d x minus d u d d y. So, d v d x is of course, 0 along x direction

there is no change the flow velocity is 0 everywhere so at y equal to 0 we have created an

infinite amount of vorticity. The instant we place the flat plate is simplification is that we



have created an infinite amount of vorticity on y equal to 0, a vortex set if you consider it a

two-dimensional case we have created a vortex set of infinite strength. 

Now, we  already  talked  about  something  on  vorticity,  we  have  also  derived  a  vorticity

transport  equation.  We have  seen  that  a  vorticity  at  any  point  changes  because  of  its

convection with the flow, because of its viscous diffusion and also because of some local

redistribution due to its rotation and stretching. This stretching and rotation of course, is a

local  redistribution.  So, it  do not  contribute much to the global  transport.  So,  the global

transport is by convection and diffusion. Now, what will happen then as t equal to 0 plus as

you have created this infinite vorticity, we know whenever there is a very high concentration

of any quantity whatever it is this viscous diffusion takes place, it tries to smooth out that

concentration so that there will be not very large concentration at some reason. 

So, the viscosity or the viscous effect will try to spread it in all direction even though it is

created y equal to 0 this viscosity or the viscous effect or the viscous force whatever you call,

it will try to spread these vorticity in all direction. So, that there is no high concentration at

any reason. So, because of this viscous action the vorticity will try to spread in all direction

that  is  to  the front,  to  the back,  to  the sides,  in  all  side.  However, we now also have a

convection  and this  convection  as  in  this  case  is  parallel  to  the  body surface.  The flow

velocity is not parallel to the body surface. So, this convection will of course, try to take away

the vorticity, away from the body surface to downstream direction only this convection is not

trying to take it to other side. 

The problem that we have considered in this case the convection will try to take it only along

the flow and the flow is parallel to the body surface towards downstream. So, this convection

will try to take the vorticity away from the body surface to the downstream while the viscous

action will try to take the vorticity in all direction to the front, to the sides, to the back. So,

out of this 4 direction you see to the back in both case is combined the convection is also

trying to take it back, take it in the backward direction, viscous action is also trying to take

the backward take it in the backward direction. So, there is no conflict. 

The effect will combine. However, as far as the viscous action towards front and towards side

you see that will be opposed by the convection, that will be opposed by convection and this

convection if it is strong enough will not allow the viscous action to spread the vorticity to

larger distance in the front and as well as in the sides. So, in case where the convective forces



or the convective action is much stronger than the viscous action what will happen? This

vorticity  will  remain confined very close to  the body in the front as well  as in the side.

However, in the back it has no objection it will go on. 

So, what will happen that if let say this is the body and the viscous action will or the balance

between the convective action and the viscous action will keep the reason to which vorticity

can be spread to this part, this is to the infinity in this side there is no (( )). So, to these 2 sides

as well to the front the convective action will not allow the vorticity to spread further by

viscous action. We will now come back to that problem that we considered that a suddenly

started plate, a plate suddenly started moving. This is equivalent problem whether we move

the plate suddenly or we place the place a plate suddenly in a uniform flow the problem is

equivalent. 

So, in that problem when a body or a flat plate started moving implosively, we saw that the

vorticity spreads or diffuses by viscous action to a distance which is proportional to root nu t,

if you remember the distance to which vorticity diffuses is proportional to root nu t. Now, in

this problem what will be a characteristic time looking to this problem where we have placed

a flat plate in a flow, what is the characteristics time? We can take this is the characteristic

time during which flow remains in the vicinity of the body. Now, since the characteristic

speed of the body is u characteristic speed of the flow is u infinity and the characteristic

length of this flat plat is L that is the length of this flat plate is L. 

So, what will be the time during which the flow will reside near the body its L by u infinity,

this is the order of the time during which the flow will remain near the vicinity of the body.

So, this time we can replace by L by u infinity. So this is a characteristic time, that is time

during which so the distance vorticity spreads root nu t,  we have replace that t by L y u

infinity. Now, how much is this how much is this root nu Ll by u infinity, how much is this?

Is it of the same order as L, let say what is the condition at which it will become of the order

of L. If you say this is of the order of L and it will happen then if u infinity L by nu is of the

order of 1. So, if this (If the order of reynolds number is of 1 then the spread will be of the

order of L. If the order of the reynolds number is much larger then the spread will be much

less  than  L.  Very  very small  compared to  L and you see then  vorticity  is  confined,  the

vorticity is confined to a very narrow reason near the body. Outside that reason there is no

vorticity (that is coming back to this figure that all the vorticity will be confined within in this

part, outside this there is no vorticity. 



This narrow reason later on we will call it boundary layer, so name of this narrow reason is

called  boundary  layer  and  the  thickness  of  this  reason  become  smaller  and  smaller  as

Reynolds number increases. This concept was postulated or brought in by Prandtl one of the

greatest fluid dynamicist little over hundred years ago, to be precise in 1903, he postulated

this and before that what is known as the subject of classical hydrodynamics had no answer to

many of the problems, some of those problems we will encounter shortly, not now but, within

in a few days. 

So, what essentially it means that when the flow reynolds number is very high where the

viscous forces are much smaller compared to the other forces present then we can treat the

flow to be irrotational that is without vorticity except in a very thin reason near the body,

except in a very thin reason near the body where the vorticity cannot to be neglected and so

the viscous action that near that within that thin reason, within that thin reason the effect of

viscosity and vorticity they cannot be neglected however high the Reynolds number is.

However as we will see that in many practical cases where you are concerned about meters of

distance or meters of length, a millimetre can be neglected, this will see of the order of the

some millimetres  or  few millimetres  in  a  practical  problem thinking about  say  the  flow

passed an aircraft this reason is of the thickness of few millimetres while we are concerned

with  say  10  meters,  20  meters,  50  meters  or  even  higher  larger  distance.  So,  in  that  1

millimetre is practically negligible. So, we see that in all practical cases we can neglect the

effect  of  viscosity  as  well  as  vorticity. The effect  of  viscosity  and vorticity  both  can  be

neglected at very high Reynolds number except in a very thin reason of the flow. However,

will see later on what will be the reparation of this theory. 

Student: Sir (( )) effect of this boundary layer is much i mean (( )) or not

Sorry I could not get you

Does the effect of this vorticity and this we will have any significance (( )) body motion. We

will see it, definitely it has. As I said that without this concept, see this is the concept, it is

called that this concept bridge the gap between classical hydrodynamics and the practical

aerodynamics that without this many many questions cannot be answered, many questions

cannot be answered. So, even though we are saying that it is very small reason 1 millimetre

and 1 millimetre is a very small reason so it hardly matters but, we will see that it matters



greatly later on though it is quite natural to think that this 1 millimetre is hardly of any worth

you can safely ignore it. 

Yes,  we can ignore it  for  certain  respect  but,  there are  some questions  which  cannot  be

answered even without considering this very very very thin reason. And the reason is as I

mentioned earlier that what it makes it is simplifying the equation a little bit that is not matter

that we have dropped this term the equation, the most important effect comes because we are

dropping one boundary condition and we know that what is the importance of this boundary

condition in any practical problem because at boundary condition alone decides what the

problem is. See as far as the flow of air is concerned whether it is a cyclonic flow over the

building which breaks down the building, brings down the building or the same airflow over

an aircraft which gives it the lift force to fly, the same the governing equation is the same,

same Navier-stokes equation no change the same Navier-stokes equation applies equally to

all these problem or even to the oceanic flow or the oceanic drifts all are governed by the

same equation. 

Not only that even the say the the galactic flow or flow within a star they are also governed

by the same equation, some forces perhaps we have not written explicitly in some particular

problem. Some forces may be considered, some forces need not be considered what we have

mentioned simply  a  body force  that  body force  can  take  different  term but,  as  such the

equation is concerned it is the same equation but, obviously we will not say that what is that

river flowing gently and a cyclone flowing over a building and then breaking it down they are

the same. 

The difference is the boundary condition that boundary condition alone gives the character of

the flow and what happens to this simplification? Dropping that term is not important. If we

could take the boundary condition even with dropping that term perhaps you will get much

better result that we do not get many thing because we are unable to satisfy that boundary

condition when you drop this term from the equation. 

Now, with this say high Reynolds number approximation or inviscid flow approximation let

us say what happens to the incompressible flow vorticity transport equation so vorticity or

incompressible vorticity transport equation at high Reynolds number.
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The equation was D omega D t equal to whereas, plus nu laplacian omega at high reynolds

number the viscous terms are negligible. So, that nu laplacian omega becomes practically 0,

we drop it. So, this is what happens to the vorticity transport equation at very high Reynolds

number or inviscid flow. Out of these, these you have already said that this is this represents

the  rotation  of  the  vortex  filaments  as  well  as  stretching  or  deformation  of  the  vortex

filaments  and this  contributes  to  a  local  redistribution  of  the  vorticity. It  is  not  a  global

transport phenomena, it is a local redistribution phenomena. How the vorticity in a particular

region is distributed its simply its simply alters that and this term is exactly equal to 0 in two-

dimensional flow because the vorticity is then perpendicular to the plane of flow. In two-

dimensional flow the vorticity is perpendicular to the plane of flow. 

So, in two dimension this is exactly 0. So, can say in two dimension. So, this of course, we

saw earlier without considering the dynamics from the kinematics itself we saw something

like this  that  the strength  of  the [virti/vortex]  vortex  filament  remain  constant  which  we

termed as Halmos theorem. So, again from dynamics we get the similar observation that the

strength of the vortex filament remain constant. Vortex filament cannot end in within the fluid

either it continues to infinity or it ends in itself that means it forms a closed loop so all these

are obtained from here also. 

We look for another very special result from here which is known as Kelvin’s theorem on

circulation. Circulation, we as you remember is an associated quantity to vorticity. If you



remember that circulation we defined as line integral of velocity over a closed circuit or over

closed path which by stokes theorem can be written as the flux of vorticity across an open

surface bounded by this closed path. So, this circulation is flux of vorticity across an open

surface bounded by the closed path on which you are finding the circulation and how this

circulation  changes  in  a  particularly  in  an  inviscid  flow is  known as  Kelvin’s theorem.

Kelvin’s theorem on circulation.
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We will consider the inviscid incompressible flow of a homogenous fluid and also we will

consider the body force is derivable from a scalar potential which is single valued function of

position,  a  single  valued  scalar  potential  f  position.  So,  inviscid  incompressible  inviscid

incompressible flow of a homogenous fluid if you want you can even it write it as a function

of time because now what will be rate of change of this circulation around this closed curve

would like to find that. 
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Sees  this  circulation  is  around  a  material  closed  curve  and  we  are  always  keeping  that

material closed curve in this whether you write this conventional small d or that capital d for

material  derivative is  immaterial  but,  on the right hand we have to write that  substantial

derivative because that u, the velocity u is defined for at a point, is not defined for a material

point, it is defined for a special point and this becomes here also you can make it small d, no

problem because this length element is of a material element. So, here this small d itself

means  a  material  derivative  or  substantial  derivative.  So,  the  first  term  on  this  can  be

expressed in terms of the governing equation what is that? what is this? what is this? So, this

is not plus ,no this is minus sorry what is this? This term, what is this? 

Student: (( ))

Velocity, that is the velocity again. So, this becomes u dot u and which as before we will

write like this. Now, we have consider a homogenous fluid and for that this incompressible

constant  density. So,  this  becomes  actually  one  half  will  come.  Now, how much  is  this

integral? First of all look term by term f d L around a closed path at which the body force per

unit mass, how much it will be the integration over a closed path? 

Student: (( ))

How much it is magnitude wise

Student: 0



0 it is a that is why we consider the body force as a single valued potential if it is not single

valued it need not be 0 but, see that that is most practical is most often the body force will be

the gravitational force and it is a single valued potential. So, this is 0. Again this is a perfect

differential, this is also 0 p by rho gradient of p by rho integrated over a closed path is again

0. What about this last is 0 integration of say the kinetic energy around a closed path is 0. You

come back to the same position, so it its 0. So, the entire right hand side has become 0. So,

you  see  that  the  it  says  that  in  an  incompressible  inviscid  flow of  a  homogenous  fluid

provided the body force is a potential single valued body force is derivable from a single

valued potential  then a rate of change of circulation of material  closed curve is  0 or the

circulation around a material closed curve will remain constant. 

So, circulation in a material closed curve will remain constant. (The flow may be unsteady

we are not saying the flow is steady but, the circulation will remain constant. Of course,

provided the flow is inviscid, incompressible, the fluid is of homogenous fluid and the body

force is derivable from a single valued potential but, you see that all these are not very strict

restriction, are not very strong restriction body force derivable from a single scalar potential

single valued scalar potential that is the most natural case. That is the most natural case so

when  we  put  that  assumption  we  are  not  restricting  much.  The  fluid  is  quite  often

homogenous other inviscid, the flow needs to be high reynolds number then it is practical

inviscid and incompressible. 

We have not yet see under what condition the flow is incompressible but, we will see shortly.

And in particularly you see then that if the circulation is originally 0 then it will remain 0.

So, if there is no circulation when the flow starts then it will always remain 0. For this type of

flow inviscid incompressible. So, you see that as we have already mentioned the flow over a

body is simply some of a uniform flow plus due to extension, flow due to of vortex plus a

flow field in which there is no vorticity, no extension or solenoidal irrotational velocity field.

So, uniform flow is always there so that uniform flow from which we starts the flow there is

no circulation in an uniform flow there is no circulation so it seems that subsequently also

there will be no circulation. According to Kelvin’s theorem since the flow originally had no

circulation, it will never have any circulation or circulation will become 0. 

Now, we have seen that there are certain situation particularly when the flow is at very high

reynolds number, we may consider the flow to be rotational except within a thin region and



that thin region we can practically neglect or we can say whatever solution we have obtained

that solution is valid outside the boundary layer. The solution is valid outside the boundary

layer,  the  boundary  layer  is  neglected.  However,  we  are  continuing  for  some  time  that

incompressible flow. We have already defined that incompressible flow are flows in which

the change in density is negligible due to change in pressure that is density does not change

because of  change in  pressure but,  does  its  really  happen that  a  density  is  not  changing

because of changing pressure? 

We have seen what will happen if the flow is incompressible, if density does not change with

pressure so many things will happen. We have the continuity equation the simplest possible

form divergence of u equal to 0 if the flow is incompressible and the incompressible flow is

those flow or incompressible fluids are those fluids whose density does not change due to the

change in pressure. The most common fluid the most important fluid to us the air we know it

is not so. If pressure changes the density of air changes, what are still perhaps little acceptable

you change pressure density of water does not change much negligible but, air is too difficult

too hard to believe that air is a fluid whose density does not change due to change in pressure.

You see the very small pressure itself changes its density. 

Then can we use all these anything for air now we will see that this is what we say the

definition of incompressible fluid that density does not change because of change in pressure

but, is there any situation where this can happen that density is practically not changing or

change is negligible if the pressure changes. One perhaps without doing anything we can say

that if the pressure changes themselves are very small, if the pressure changes themselves are

very small so the pressure changes by say 2 percent, 3 percent of the pressure, whatever

pressure we have it changes by 2 or 3 percent or 5 percent perhaps with that small change in

pressure the density will not change. So, when the pressure changes are very small we can

say that the density changes are practically 0 because of that density so only small pressure

change perhaps we can consider but, that is of course, a qualitative answer. We look for now

some  quantitative  answer  that  under  what  condition  the  flow  can  be  considered

incompressible and the result of that incompressible flow that the velocity field is solenoidal.

So, we will see under what condition of flow or fluid can be considered incompressible and

its velocity field is solenoidal. This is what we will try to do now and of course, then we will

look for some solution of that type of flow. 

Student: (( )) 


