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Equations of Motion (Contd.)

So, last time we expressed the energy equation in the form of its integration, and called

that as the generalized Bernoulli’s equation which showed that the internal energy, the

pressure, kinetic energy and potential energy some of these on a material path line is

constant, when the flow is inviscid irrotational. Then we considered steady case when

material path line and streamline coincides, and we said that this term is constant on a

streamline,  then  we  went  on  to  the  assumption  that  if  the  flow  is  irrotational  and

isentropic then this is constant throughout; that there is only one constant for the entire

flow field, the generalized Bernoulli’s equation which is an integral form of the energy

equation. 

Now, one thing you should remember that whenever you try to use these equations, you

must remember the underlying assumptions that under what condition this is valid, like

this is an integral form of the energy equation. So, the basic assumptions involved in

energy equation which is say like isotropic fluid, linear stress relationship when those

condition  or  the fluid is  ((  ))  when these conditions  are  valid  only then  this  energy

equation in this particular form is valid. And further integration integrating that equation

we also of consider that the body force field is potential field. 

We also consider that the pressure field is steady, and under those assumptions only the

equation is valid. And then if you want to apply it that is a single constant for the entire

flow field, then in addition the flow field must be isentropic. Only then you can apply it

if not you cannot apply it in this form. Today, we will be doing almost the similar thing

but with the conservation of momentum equation and which we will see will give the

original Bernoulli’s equation particularly in the form that Bernoulli originally derived



many, many years ago. 
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So, we will write this equation of motion for incompressible flow or flow with constant 

density. By the way when we say equation of motion we mean actually the all three 

equation the mass conservation equation, the momentum conservation equation, as well 

as the energy conservation equation but for the time being we will call only take the 

momentum conservation equation. The momentum conservation equation for constant 

density flow, we can write at in the standard vector form, let us divide it by this density 

so that we can write this equation and this d u, dt we will write it in the full form, 

expanded form which is d u, dt plus this mu by rho is usually denoted by nu is called 

kinematic viscosity.

We will now use some vector identity, this you have already used in different form. This

can be written as gradient of half q square which you remember that q square is u dot u.

Once again, we assume that the body force per unit mass or body force is a potential

force and if we assume that the body force is a potential force. This can be written as the

gradient of the potential energy per unit mass. And here this rho being constant we can

take it inside the gradient and this Laplacian of u also, we will write using another vector

identity curl of curl of u this is same as Laplacian.



 Now, in this equation you see there are three gradient terms gradient of half q square

here,  gradient  of  psi  and gradient  of  p  by rho.  We combined all  this  gradient  terms

together on the left hand side. So, we have this term we take to the right hand side, this

curl of u will once again denote by that vorticity u cross omega and here you see this first

term  is  0  because  of  the  incompressible  continuity  equation  the  incompressible

continuity equation says divergence of u is 0 so the first term is 0. So, you have only the

second term which is curl of omega.

Now, if curl omega that is the vorticity 0, that is if the flow is irrotational then the right

hand side is identically 0 irrespective of the body viscosity. Whatever the viscosity is the

right hand side is 0, if vorticity is 0. 
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Now, we can write that for irrotational flow if the flow is steady the first term becomes 0

and only this gradient remains and from there we can see this term is constant. Anyway

even  if  the  flow is  not  steady  for  an  irrotational  flow we  know that  if  the  flow is

irrotational the velocity field can be expressed as the gradient of a potential.  So, for

irrotational flow and this now we can substitute here and gradient of phi is derivative

with  respect  to  space,  derivative  with  respect  to  x  y  z  and  we  already  have  here

derivative with respect to t but when we differentiate with say respect to x and t it is



immaterial  which  one  we  first  derive  first.  Whether  we  differentiate  first  with  t  or

differentiate first with x it is immaterial.

So, this d this terms become now d dt of gradient of phi which also you can write as

gradient of d phi d t. So, writing that this now becomes we have gradient of d phi dt and

since this is also a gradient we can put all of them together gradient of d phi dt plus p by

rho plus half q square by. So, we see that for irrotational flow this term is now constant

and for steady flow the first term is does not existwhich happens to be the original form

of the Bernoulli’s equation. So, that original Bernoulli’s equation is just an integration

integral form of the momentum conservation equation or Navier stokes equation. 

Of course, it is not a new equation this equation is already there within the equation of

motion. So, it is a special form of the Navier stokes equation however this form holds

only  when  the  flow  is  irrotational  and  see  in  particularly  in  many  aerodynamical

application this psi which represents the potential force and in most aerodynamical flow

problem this body force comes from the gravitational force and in this case this psi is the

gravitational  potential  energy  per  unit  mass  that  is  simply  that  g  z  where  g  is

gravitational acceleration.

And most  often this  term need not be written separately explicitly. Look at,  see the

application of these equation will be always for finding some difference. We can apply

this equation to two points in the flow or in some cases say two points on a particular

streamline and you see the potential energy difference between two points in a streamline

or in general two points in a flow in many cases will be negligible. And even if it is the

small quantity that can always be absorbed in the pressure. A difference in pressure will

be will take care of the difference in potential energy in many cases, so this term even

need not be written separately.

So, we will see that in most aerodynamical application this is usually not written. We will

consider another special form of these Navier stokes equation and once again we will

derive it for incompressible flow which is a very very important equation and for that we

will start from say here the first two three steps are same we will start from here. 
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Here, we have what we have the incompressible Navier stokes equation in this form.

This is of course, the incompressible Navier stokes equation and from here we have

obtained this equation.  So, we will start  from this.  These two step we will  not write

again. We have applying that vector identity, we have d u dt plus and this last term we

will write as it is, this last term instead of writing this we will write the first one. Only

this  second  term  that  convective  acceleration  part  we  are  writing  using  this  vector

identity.

Now, let us take a curl. Curl of this equation, if we take a curl of this equation what do

we get? If you find inconvenient to take curl of this equation the alternative is you have

to  write  the  three  component  of  this  equation  then  see  the  curl  is  basically  some

differentiation like the z component of the curl operator is d d y minus, d d x. Similarly,

the x component is d d y minus, d d z, x component of the curl operation is d d y minus,

d d z. So, if you want to take that in this scalar form first of all you have to write this in

three component equation the x component, y component and z component. Then the x

component of the equation you have to differentiate with respect to y and with respect to

z and subtract the two, which will give you the x component of the curl but anyway we

can do it by simple. 



So if we take a curl.  See, curl is again a special differential operator. By taking curl

means you are differentiating with respect to x y z in different combination. So, here the

first term look to the first term, we have already a time derivative, but the x derivative

and y derivative are independent of this time derivative. So, we can think that we have

taken the derivative first and then taken this time derivative, so what it becomes? It is d

dt of curl of u. So, the first term will become d dt of curl of u and curl of u is omega. So,

the first term will become second term, curl of grad of something, curl of a gradient is

always 0, curl of a gradient is always 0. 

So, the second term gives 0 or this term becomes 0, the third term becomes minus curl of

here also the first term is gradient term and curl of it is 0 and this second term curl of

Laplacian of u also again can be rewritten as Laplacian of curl of u. So, the last term will

become. This second term as you can see is basically a vector table product type of thing

product of three vector curl is a differential operator but a vector differential operator and

u and omega are three vectors, this can be written as sorry this is minus this is plus. 

Now, since you are considering incompressible flow this divergence of u is 0. This term

is 0 and so is this divergence of omega is also 0, omega is always a solenoidal vector,

omega is a curl, curl of u so its divergence is always 0. So, divergence of omega is 0 and

this for incompressible flow this is also 0 because divergence of u is 0. So, we have only

this. So, we will write it like this d omega dt  see this is also the Navier stokes equation,

this equation then the Navier stokes equation written in terms of u in the same equation.

This is not an separate or new equation it is only an alternative form of the Navier stokes

equation written in terms of vorticity as the primary or independent unknown. 

In many cases later on you will find that this form is perhaps more useful for practical

use and equation expressed in this form is called the vorticity transport equation like the

momentum conservation equation can also be called as a momentum transport equation,

it says how the momentum at one point changes. Similarly, this equation tells how the

vorticity  at  one  point  changes  with  time  rate  of  change  of  vorticity  the  equation  is

commonly known as vorticity transport equation, but essentially this is the same Navier

stokes equation or momentum conservation equation expressed in the form of vorticity.



Now, if you look at the two terms on the left hand side these two together can be written

as these two terms together can be written as that material derivative of vorticity. You can

see that this is the material derivative. The specialty of this equation here is that in the

original form of the Navier stokes equation there is no term like this, this term, there is

no term like this, this term is there in the original Navier stokes equation of course, in

terms of  u,  this  is  also there in  the original  Navier  stokes  equation,  omega is  being

replaced by u it is there, the last term is also there the viscous term the pressure and

potential energy part that has vanishes because of that curl operation.

Now, look to this each of this term the first term is of course, simply how the vorticity

changes at a point with time. How the vorticity at a point in the space changes with time

that is what and how it changes it says the what are the different cause of change. The

first term we have already many a time called this is the convective term so it says that

the vorticity at a point can change because the vorticity can be convected with the flow

with flow velocity u that if there is some vorticity, this vorticity can be taken away from

this point by the fluid with this flow the flow itself as it take carries momentum along

with it it may carry vorticity also along with it it will carry. 

Leave this  term first,  this  last  term viscous action,  it  is always usually diffusive and

dissipative action that both viscosity can diffuse vorticity if there is vorticity at one point

this what viscosity can spread it to some other part if there is a vorticity in a one portion

of the fluid one region of the fluid this vorticity can be carried away with the fluid by the

flow velocity. Also, it can be diffused to some other part of the fluid by viscosity these

are all right this last term or this term particularly this omega gradient u what is this?

This is of course, another cause of change of momentum vorticity but which has no

analogous in the momentum equation that is the momentum cannot be changed by this

mechanism.

However, vorticity can be changed by this mechanism. This change by or transport by

convection  and  transport  by  diffusion  that  are  valid  for  both  vorticity  as  well  as

momentum. However, this region of change this this term this type of change does not

occur in momentum. Momentum cannot be changed by this process while vorticity can

be changed by this process. Now, what is this? If you look to this term you can see that in



two dimensional case this is 0 identically, this is 0 for two dimensional flow, because this

omega gradient u if you write it in this form that omega in this form then what happened,

this is in a two dimensional flow vorticity has only one non 0 component that is in the z

direction.

The velocity  if  we consider  the  velocity  in  two dimensional  case  has  only  x  and y

component then the vorticity has only one component in the z direction ok. Then this

omega dot gradient it will leave only a z derivative and since u does not have any z

dependence this term is 0 by default. It is 0 for two dimensional case. This term is 0 for

2D flow, but not so forth three dimensional flow, for three dimensional case of course, it

is non zero and what is told is that this term actually represents a deformation that is a

vorticity of a vortex tube or vortex filament can change because of the deformation of the

vortex filament that is the vortex filament like any material element can deform a vortex

element can deform like any material element. 

The way one of your string can deform, it can be twisted, it can be extended, it can be

shortened similar way a vortex filament that also can be deformed and because of that

vortex filament which is this term is often named as vortex stretching term that a vortex

filament can be stretched, and because of this stretching the rate of change of vorticity at

a point can change. So, this is a special mechanism which does not is which is not true

for momentum transport but with which happens in case of vorticity transport, a vorticity

at a point can change just because of the stretching or deformation of the vortex filament

or vortex element but momentum cannot be changed in that way.
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So this term is known as vortex stretching term and is very, very important later on when

we will consider vorticity dynamics perhaps in another course. The effect of this term is

local basically, while the effect of the other two terms convection and diffusion is global,

the effect of this term is local for the time being that is all about the equations of motion

in general.

So,  we  have  derived  all  equations  of  motion  that  is  mass  conservation,  momentum

conservation and energy conservation and also  we have  derived alternative forms of

those equations for some particular cases, then we will look to a few solutions of these

equations of motion of course, as we have mentioned earlier the equations of motion in

their general form or also in the simplified form for incompressible flow are non-linear

set of equations and their non-linearity come, because of that convective term present in

the acceleration and hence all inertial force terms in the energy equation as well as in the

momentum equation. 

And solving non-linear equations is extremely difficult except for some special cases

there  are  hardly  any exact  solution  available  for  this  equation.  Only  for  a  very  few

limited flow problems there are exact solution available for this equation, and mostly

they are for incompressible flows the analytical solution. 
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So, before we go to that let us write the complete set of complete set of equation of

motion for incompressible flows. Once again that by incompressible flow we mean that

the flow in which density is independent of pressure, density is not changed because of

pressure. When a flow can be incompressible that we have not yet explained we will

come to that little later, but for the time being assume that there are some flows in which

density  is  independent  of  pressure,  density  does  not  change  because  of  change  in

pressure. And however still density can change because of change in temperature, so if

we assume that the change in temperature is not large a small change of temperature may

occur and as a consequence the change in density is really negligible,  the change in

density due to temperature is also negligible.

If this happens that the density does not change because of pressure and the change in

temperature is small, so density does not change due to temperature as well, then density

is  constant  and  the  mass  conservation  equation  or  the  continuity  equation  becomes

simply  divergence  of  u  with  0.  The  momentum  conservation  or  the  Navier  stokes

equations  become or  take  the  rho from this  side  and make it  and once  again  if  we

consider this to be the potential body force, this can be written as, this is little restricted

from this because in this case the force field may need not be potential for this equation

but in this case the force field is only potential.



So, as far as applicability is concern this is little restricted. Now, you see this is both

gradient and so you together these we can thought of as a modified pressure and can

write as minus gradient p and forget about the body force. This pressure is then called the

modified pressure which takes care of the potential body force, and if you look to the

energy equation for incompressible flow, the energy equation will become the energy

equation for the incompressible flow will become rho, do not confuse it with the velocity

potential, this is that viscous dissipation of energy per unit volume and if you look back

to your the derivation of the energy equation you see that this is that part of the work

done by the viscous traces due to rate of strain. Now, for an incompressible flow with

constant density there is as you can see this temperature does not appear anywhere in this

equation.

Since, already we have assumed that the change in temperature is small, so density is not

changing due to temperature and for that case the if the change in temperature is small

then this coefficient of viscosity will also not change much due to temperature. So, there

is nothing in these first two equations which depends on temperature for this case so the

first two equations has become decoupled from the third equation meaning that these two

equations can be solved without this equation, however this equation cannot be solved

without the solution of these because this contains u this dt d t this when you write in

expanded form it contains u gradient ok.

So, this needs u, but these two equations does not need t. So, the first two equations are

decoupled, first two equations are decoupled from the third meaning we can solve this

continuity and momentum equation together to find the velocity and pressure field and

once the velocity  field is  known then we can solve this  energy equation to find the

temperature if we are interested. In many problem we are not even interested to find the

temperature,  so we do would not  even bother. Now, though the equations  are  much

simple then the original equation still these equations are practically unsolvable because

of these non-linear term present in this equation, in this term and also if we expand this,

this also contains another term like this u grad[ient]- d because of that the equations are

non-linear and usually cannot be solved straight away for any given boundary condition. 

Until now of course, we have not said boundary about boundary condition that is simply



because that boundary conditions are of course, problem specific. Since, the boundary

will be changing from problem to problem the boundary conditions will also change and

we will talk about boundary conditions for a practical particular problem, but just a few

word about the boundary condition. See most often, we are interested flow over a rigid

body or a solid body, so that will a rigid body or a solid body will be a boundary of the

flow most often or all most in all practical cases. 

We are interested as the flow over or within some rigid body that is flow through a pipe,

it is within a rigid body or a solid body most often that there will be no deformation of

the solid so we can treat it even rigid body. If you have there is a flow over the building

then again building is can be treated as either a solid body or rigid body depending upon

whether you are interested to consider the deformation of the building or not. If you are

thinking flow over an aircraft again it is flow over a rigid body or elastic body depending

upon whether you will consider the deformation of the aircraft in your analysis or not.

But anyway it is flow near a solid boundary and what you usually expect of the flow, if

there is a flow over a solid body. Can you say what condition it is likely to satisfy? What

it will be? What is pretty obvious, that flow will definitely not penetrate that solid body.

If there is a flow over this say this table, it is obvious that the flow will not penetrate this

table and how can you express it in terms of say these a equations or these unknowns that

is the flow velocity normal to this table or normal to this solid body will be 0. Non 0

velocity means it is going inside. So, obviously it will not, so the normal component of

the velocity will be 0 is very obvious condition when there is a flow over a solid body. 

However, it is also shows that in most cases or all most in all cases even the tangential

velocity or the relative tangential velocity of course, when you are talking about velocity

we are talking about relative velocity, that the relative velocity, tangential component of

the relative velocity  is  also 0 on the solid  body. So,  both the tangential  and normal

component of the relative velocity is 0 on a solid surface or on a rigid boundary so that is

the most important boundary condition and this boundary condition is no slip that is

there will be no slippage between the flow and the rigid body at that at their interface that

is on the surface of a rigid body there will be no slippage.



So, the most important boundary condition is the no slip. Any other boundary when you

come across we will  a talk about it  but this  is  usually  the most  important  boundary

condition and all most in all problem this boundary condition will be required that on a

rigid surface or on a solid surface. Let us call it rigid surface, on a rigid surface there will

be no slip that that is there will be no relative velocity between the rigid body and the

flow.

So, if the rigid body is at rest the flow on the surface of the rigid body will also be at rest.

So, we have the most important of the boundary condition, no slip condition that is as far

as the boundary condition for this equation is concerned. However, if you want to solve

this energy equation as you can see the temperature here is the basic unknown. So, you

must have some condition or something to express temperature on a rigid body or on a

solid surface. Of course, there is nothing obvious like this usually the conditions will be

like this that if you have solid body and there is some flow over it, you will try to see that

some of the things like you may want that the temperature of the solid surface should not

change, that is what you may want and you may set it that the temperature on the solid

surface will not change.

So, the flow which is in contact with it will also have the same temperature which is

usually called as the isothermal boundary condition that you are fixing the temperature

and keeping it fixed. You are not allowing change the temperature. Sometime, you may

have in another form that no heat will go from the solid surface to the flow or vice versa.

You can call that as adiabatic boundary condition adiabatic wall, the wall is such that no

heat is being transported from the wall to the flow.

So, of course, these will be problem to problem. Now, given these boundary conditions

of course, now the boundary can be very complex. The boundary may be a very complex

or may be simple some cases. So, if the boundary is very complex even you see this you

are saying no slip but you have to satisfy that no slip and if the boundary is very complex

satisfying that itself is quiet a difficult task. So, as we mentioned that these equations

first of all they are non-linear and then if the boundary is complex then the boundary

condition also can be very complex and there are no general exact solution available for

this equations for under any boundary condition no general solutions are available.



However,  for  some  simple  boundary  or  for  some  simple  flow  problem  some  exact

solutions are available and for the time being we will consider just 2 or 3 such simple

example problems and then we will keep those for other problems for later course. So,

here just for example, we will consider 2 or 3 very simple cases for which exact solutions

are available. 


