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 Last time, we have been discussing about the attitude dynamics. So, we continue with 

the same topic. So, we looked into the active and the passive control. In the active 

control, we had the rocket control, the reaction (( )) control, then, dual (( )) satellite, (( )) 

satellites we saw; while the passive control was the gravity gradient control. So, but the 

gravity gradient control, it is a cheaper, easier to design; but what happens, its pointing 

accuracy is very poor; it is around 10 to 20 degree. 
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 So, the gravity gradient control, pointing accuracy 10 to 20 degree. So, it is not good. It 

may assist; you can design a satellite, where the reaction (( )), other things are available. 

And, if you have to make a earth pointing satellite, so, in that case, it can assist, 

provided, you design your satellite in that way. So, many of the satellites maybe 

designed like, say, you have a satellite here, which look like, these are the solar panels; 

these are the connected solar panels and you may have a gravity gradient boom, where a 



mass is attached to it; this is the boom, and one mass is attached to that. And, instead of 

there being a mass, you can have certain instruments stored in this, if this is heavy. So, 

this will provide you the constant gravity gradient. So, this will assist in stabilizing the 

satellite, which will, and where you are designing it, to always point toward the center of 

the earth. So,the. So, this is called the favorable gravity gradient, in this case, because it 

is a favoring aid to a stabilize it. 

But as a whole, using just the gravity gradient controls satellite, for our various scientific 

purposes, is not feasible. You can see that, the accuracy is not very large. Moreover, the 

orientation and other problems are there, which you must do. So, therefore, either we 

have to do the rocket control, reaction (( )) control; these are the active controls. Other 

thing like the spin stabilizers, and those are only for the stabilization purposes. But if you 

want to change the orientation of the satellite, so, ultimately you have to come down to 

the, using the reaction (( )), or the rocket motors, or what we call as the magnetic 

actuators. 
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So, in the magnetic actuators we have three coils. So, this is one current carrying coil and 

another carrying coil will be perpendicular to this; another will be lying like this. So, 

these are in three different planes. So, we can assume that, the center is here. So, this is 

one phase of the coil; this is another phase, second coil; this is the phase of the third coil 

and this wires, they carry the current. So, if you, if this, this is put on the satellite on 



board and the satellite is at low altitude, say up to 700 degree, 700 kilometers, 300 to 700 

kilometers. So, as we go up, magnetic field of the earth it dies out fast. So, magnetic of 

field of the earth, it is a directed like this; say, if my, if our magnet is pointing to you, if 

the north of the magnet and this is the south of the magnet. So, it will point, what the 

magnetic south of the earth. So, earth is basically, acting as a big dipole; this also is 

acting like a magnet. So, naturally, if you have artificial magnet, or the, and if you hang 

it about this point, so, it will try to orient like that only. So, in that case, this will be 

pointing you the south, magnetic south. So, the north pole of the earth, which you call 

the geometric, geometric north, so, that is basically, the magnetic south of the earth, 

because here the north pole, north pole will only orient towards the south pole, and south 

pole will only orient toward the north pole of a magnet. 

So, earth can be assumed to be a big magnet. So, in this magnetic field, if your satellite is 

moving…So, you have the magnetic field, which is spreading like this and that is coming 

and terminating over this pole. So, if your satellite is interacting, this coils are interacting 

with this and these are carrying currents; so, they will produce dipole movement. So, this 

also, these coils, they act as the dipole. And, we are not going to get into the equations 

for them, but you assume that, this are acting as a dipole and therefore, once they are 

interacting with the magnetic field, a torque will be produced. So, at any time, in the case 

of the magnetically actuated satellites, only two axis control is possible, at a particular 

instant of time. So, again, we need not go into the details, but it will be suffice to say 

that, over a period of time, over a period of time three axis control is available. So, the 

torque is written as the dipole movement cross the magnetic field. So, whenever the 

magnetic field, it coincides with the, it is parallel with the dipole movement, so, no 

torque will be produced. So, we have the three axis coils here. So, one of them will be 

coinciding with the, or say that, the one of the component of the total magnetic, total 

dipole movement this three coils constitutes, so, one components will always lie along 

the B vector and that gets neutralized. 

So, only two components are available, and therefore, we say that, only two axis control 

is possible, at a particular instant of time. So, only two axis possible, at any instant of 

time. However, over a period of time, three axis control is available. So, as the satellite is 

moving in the orbit around the earth, so, three axis control can be carried out. So, for 

small satellites, this is very advantageous and nowadays, when the micro, nano, and Pico 



satellites are being designed, so, in that case, it can be utilized and it is a low in cost, easy 

to design, reliable also, active control can be done in using this; but few limitations are 

there that, if the satellite is rotating at very high speed, it is not feasible to use this 

magnetic actuators; because it can control the satellite at lower angular velocities, at 

lower rotational rates. So, this is our description of magnetic actuator control. 
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 So, this is enough background for our purpose, for this course, because we are not going 

into the…Only six lectures are assigned for this particular topic. Rest of the things, we 

devote over the attitude dynamics. So, now, we consider the rigid body dynamics. 

Suppose, this is an inertial reference frame and we have another reference frame e 1, e 2, 

and e 3; this is a rotating reference frame. Some rigid body is there and this is the center 

of mass of the rigid body. This point, let us write this point as A; this point, we can write 

as O. The angular velocity of this rigid body, let us say, it is 1 by omega, where omega is 

a vector, whose components are omega 1, omega 2, omega 3. So, omega can be written 

as omega 1 times e 1plus omega 2 times e 2 plus omega 3 times e 3. So, this body is 

rotating at the angular velocity, with angular velocity omega. Now, what we need to do 

here, describe the rotational motion of the satellite. So, for describing the rotational 

motion of the satellite, we need to proceed from the scratch, and work out the whole 

thing. So, let us say that, the radius vector of the point O, this is R 0 and there is a point 

in the body, whose radius vector is rho. So, the distance from here to here, this can be 



written as r. So, while we are working with this, the rigid body dynamics, so, we will 

utilize the result developed in the few lectures that I gave, at the start of this course. 
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 So, O is the center of mass of the rigid body and also origin of the reference frame e 1, e 

2, e 3; e 1, e 2, e 3, these are the unit vectors. 
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 They can write it as x, y and z, and the unit vectors in this directions are E 1, E 2 and E 

3; or either we can remove this altogether and we can, imagine that, E 1, E 2 and E 3, 

these are the three axes and E 1 cap, E 2 cap and E 3 cap, these are the unit vectors. So, E 



1 cap, E 2 cap and E 3 cap are unit vectors. Similarly, e 1 cap, e 2 cap and e 3 cap, these 

are also, are unit vectors and the axes are e 1, e 2 and e 3. So, here, we should, the 

reference frame, we should remove the cap here; because that indicates, the unit vector. 

rho is the position vector of the point; let us say this point is P, point P, with respect to 

the center of mass. So, angular momentum of the small mass, there is a small mass which 

is located here, in this point. So, let us say, its mass is d m. So, the angular momentum of 

the small mass d m, located at P can be… 
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 So, for the angular momentum of the body, the small mass P, that I need to find it out. 

So, angular momentum, angular momentum of P, or the mass d m, about the point O can 

be written as d h is equal to rho cross v times d m, where we will see that, we are finding 

the angular momentum about this point. So, this is the momentum. Suppose, our velocity 

v is directed like this; for this particular mass, this is the velocity direction v. So, if this is 

the velocity direction, so, rho cross v multiplied by m, that represents the angular 

momentum vector. And, v, obviously, can be written as, the velocity of the center of 

mass which is v naught plus omega cross rho. And, this we have worked out in our, few 

initial lectures, at the start of this course. So, if we integrate this, this we have to multiply 

it by d m here and if we integrate it, we get h. Now, this we can, this can be written as 

rho d m times v 0; this is the cross product; this is the cross product, here; this is also 

cross product, plus rho cross omega cross rho d m. So, now, if O is the center of mass, 



so, this integral will vanish. So, this integral, this quantity, this is equal to 0, because O is 

the center of mass of the body. 
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 So, this quantity as a whole, it is not contributing to the angular momentum of the body. 

So, what we are left with, h is equal to rho cross omega cross rho. So, this is a cross 

product and the, this can be written as rho dot rho times omega minus rho dot omega. So, 

therefore, h will be…Now, we can expand it and write in a proper way. So, we, we can 

write, rho equal to rho 1 e 1 plus rho 2 e 2 plus rho 3 e 3 and omega, already we have 

written in terms of omega 1 e 1 plus omega 2 e 2 plus omega 3 e 3. Remember, this 

omega, these are the components of angular velocity along the body axes. So, in this 

figure, this is the velocity vector omega. So, we are taking the components of this 

velocity vector along the direction e 1, e 2 and e 3. Similarly, this rho vector, its 

components are taken along the e 1, e 2 and e 3 directions. 
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 Now, we defined that Dyad as, this Dyad, this is defined as the product of two vectors 

without considering dot or cross product. So, if we write e 1 times e 2, so, this constitutes 

a dyad. So, now, the, we define a quantity, what is called the dyadic; so, this dyadic will 

be the summation of, summation of, such dyads. So, the, if we write e 1 e 2 plus, e 1 e 1 

times e 2 e 2 and assign this, the symbol E double bar. So, this is called a unit dyadic. 

Now, we utilize to, utilize this to rewrite this equation.  

So, we can number this equation as A. So, e double dot, w r, we can see that, this can be 

written as e 1 e 1 plus... So, this will get reduced to omega 1 e 1, if we take the dot 

product, which is nothing, but omega. So, if we are taking the dot product of a vector 

with a unit dyadic, so, ultimately we get the same vector. 
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 So, we utilize this property, in equation A, we can write h equal to rho square omega 

minus rho times, this is the dot product, omega dm. Now, the omega, we can replace in 

terms of a dyadic. So, writing this as, we have written as E double bar dot omega; this is 

not a dot product here; this one, this is not a dot product; simply a multiplication here, in 

this place. So, rho square omega, we are taking it from this place. So, this rho dot, this 

two vectors multiplied together, this becomes rho square and there is no dot product; so, 

it is just a point I indicated. So, I removed now. Now, if you look into this equation, 

omega dot can be taken out of the integration sign, because integration we are doing with 

respect to the mass; not with respect to the omega. So, therefore, we can write this as, rho 

square E double bar minus, this multiplied by omega. And here, the dot we are bringing 

in. So, ultimately, h can be written as, where I double bar, this is called the inertia 

dyadic, inertia dyadic. 
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 Once we have done this, so, this h, this is can be expanded and it can be written in a 

format. So, inertia dyadic, let us first write this, further. First, we will do this and we will 

come to the expansion of the h. So, this can be written as, I alpha beta times e alpha cap e 

beta cap, where e alpha cap and e beta cap, these are the unit vectors, unit vector. So, 

basically, this is written in a ((tensure)) notation. So, inertia ((tensure)) can be, this 

inertia dyadic can be written as I 1 1 e 1 cap e 1 cap, I 1 2 e 1 cap e 2 cap and I 1 3 e 1 

cap e 3 cap. Similarly, other terms can be filled in and this is basically symmetric. So, 

this also becomes, I 1 2 e 1 cap e 2 cap, I 2 2 e 2 cap e 2 cap and I 2 3 e 2 cap e 3 cap. 

Similarly, here, in this place, you will have I 1 3 e 1 cap e 3 cap, I 2 3 e 2 cap e 3 cap, I 3 

3 e 3 cap and e 3 cap. So, this is your inertia dyadic and what you are doing, you are 

writing h as the product of this inertia dyadic. So, in the matrix notation, the same thing, 

this thing you need to place here, in this place, and your omega is omega 1 e 1; you write 

omega 2 e 2 in this way; omega 3…Take the matrix product and you will get the result 

for h. So, h 1, h 2 and h 3 components, we get it from this place. 

H can be expanded and finally, you can write in this way. Now, one thing more, this, the, 

you can put the sign here, if you want to you can put a negative sign here, before the I 1 

2 and here, you can make minus I 1 3 and similarly, a negative sign before this off 

diagonal terms. So, why I am suggesting that, because once you write the cross product 

of inertia, say you write I x y, so, this is x y times the mass. 



So, here, if you write it in this way, then, you need to put a negative sign before this. But 

if you absorb the sign in this place, then, you can keep the positive sign here, in this 

place. So, if you are keeping a negative sign here, in this place, then, all these terms will 

turn to be positive, with positive sign. If you make this as positive, so, here, the half 

diagonal terms, they will have the negative sign. So, it depends on the choice, what kind 

of the presentation you want to do. So, let us make this negative. So, all this half 

diagonal terms are negative. So, the cross product, this is your diagonal term; this is half 

diagonal term, and this is half diagonal term. So, here the, we have the negative sign 

here, in this place, this place. So, only the diagonal terms will not have any negative sign. 

So, similarly, so, in this case, you have I1 2. So, I 1 2, we will be writing as, the rho 1 

rho 2 times d m, where rho 1 and rho 2, these are the components of the rho vectors. 

And, because you have absorbed the negative sign here, in this place, so, all this will 

contain a positive sign. So, ultimately, the equation showed here, in this place, this 

particular equation, you can expand it in terms of this vectors, and do the integration and 

get the result. 
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So, maybe, we will postpone it little bit, for the next step and we will right now see the 

results, and later on, work with the more details. So, right now, our concern is with 

looking into the configuration, how does it look like. So, this is I 1 2 omega 2 minus I 1 3 

omega 3; this is I 1 3 I 2 3, because it is symmetric, so, we write in the same way. See, 

this I 1 2, this indicates your integration rho 1 times rho 2 d m. And similarly, I 2 1, this 



indicates the integration rho 1 times rho 2 times d m. So, there is no difference between 

this. So, I 1 2, this is equal to, this is identically equal to I 2 1. 
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 So, in the matrix notation, you can write h 1, h 2, h 3. Now, we have got this. So, this is 

your angular momentum equation and this is your angular momentum vector, whose 

components are shown here. 
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Now, before we do anything further, let us look into the, some of the properties of this 

real symmetric matrix. So, properties of real symmetric matrices. We are going to utilize 



this properties in developing the equation of motion. So, all real symmetric 

matrices…Eigen values are, Eigen values are real. So, you may wonder, what does it 

mean by the Eigen values of this matrix? In Matlab, there is a command e i g. So, if you 

have a matrix, if you type a matrix in the format, say, matrix you define as A, where the 

components of this matrix are written as something, 10, 10, 20 and 5 and they are 

separated by this semicolon and then, you can write say, 5, 15, 20 and 5; so, this is 

symmetric matrix, this will be, this will be 20 and then, let us say, this is again 20, and 

the last term is 30. And again, separated by a semicolon and then, say, 5, 30 and let us 

make this as the 15; and, if you give, in Matlab, this command e i g A, so, it will give 

you the, list you the Eigen values of this matrix. So, this is the moment of inertia matrix. 

These are the diagonal terms; these are the half diagonal terms. So, half diagonal terms 

are nothing, but basically, the product of inertia. So, the Eigen values of this matrix, it 

signifies the principal moment of inertia. So, it is possible that, if you diagonalize this 

matrix, so, you get the principal moment of inertia and the corresponding Eigen vectors 

they indicate the direction of this principal moments, principal moment of inertia 

direction. 
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So, in which direction it is lying, so, that direction, you can obtain with respect to certain 

axis. So, we list the first property as the Eigen values are real. So, Eigen vectors, Eigen 

vectors of a real symmetric matrix can always be selected as real. A real symmetric 

matrix is always diagonalizable. So, a real symmetric matrix is always diagonalizable. 



So, what does mean by diagonalizable that, if you give this e i g A command, if this is, 

obviously, here, this is a real symmetric matrix. So, if we give this command, so, you 

will see that, this matrix is having only the diagonal entries; this three entries; rest other 

entries are zero. So, this implies diagonalization. So, only a real symmetric matrix is 

having this property, that is, it is always diagonalizable. So, every real symmetric matrix 

has a complete set of orthonormal Eigen vector. So, in this case, this matrix, this is a 

inertia matrix, and because this is real and symmetric, therefore, this will have three 

orthogonal, or ortho, orthonormal, orthonormal Eigen vectors. 
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So, if you have a matrix A, so, A transpose A, if this is written as I, so, you call this as 

the orthonormal. So, now, we take the next property. For every real symmetric matrix A, 

obviously, here, we are considering a matrix of size n into n, the n rows and n columns, 

so, there exists a matrix of size, or matrix of size, a matrix M, which is again of size n 

into n, which is a real orthogonal, orthogonal matrix, such that, M transpose A equal to 

D, where D is a diagonal matrix. This two matrices are orthogonal, if A, A times A 

transpose equal to I, we can put here in this bracket. So, this is orthogonal, we write. 

And, if two vectors are orthogonal…So, two vectors are orthogonal means, they are 

perpendicular to each other. So, they will not have any component of this, in this 

direction; while in the case of the matrix, we write this that, if they are orthogonal, then, 

they have this property that A times A transpose equal to I. And, you can see from this 

property, if A times A transpose, this is equal to I, so, A transpose, this implies that, this 



is equal to A inverse. So, if we take the product on the right hand side, like, we, we write 

A transpose A, so, this becomes A inverse A. And, A inverse A is nothing, but your 

identity matrix. This is identity matrix; I is a identity matrix. You should not confuse this 

with the inertia matrix. 
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So, we have seen that, the orthogonal matrix, it will satisfy this two equations, what we 

have written here. So, next, we go to the next property. So, the matrix M, this is called 

modal matrix, whose columns are the Eigen vectors of the matrix A. D is a diagonal 

matrix, whose diagonal entries, whose diagonal entries are the Eigen values of, of the A 

matrix. Eigen values in the modal matrix, Eigen values in the diagonal matrix are in the 

same column as their corresponding Eigen vectors in the modal matrix M. So, with this 

eight properties, we will be able to analyse the inertia matrix. 
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So, we list few other properties also. So, if we are given the I matrix, which is the inertia 

matrix. So, we can list three principal directions of this, which will be corresponding to 

the…In the three principal moment of inertia, which will be corresponding to the 

diagonal elements of this. So, we have again, the Eigen values of the moment of inertia 

matrix is the principal, are the principal values, principal moments of inertia. If this 

happens, so, if your matrix gets diagonalized, the inertia matrix A, which we have been 

earlier using with notation A; so, if your inertia matrix is diagonalized, then, the half 

diagonal terms, half diagonal terms will become zero; half diagonal terms of the 

diagonalized I matrix, which we have indicated as D earlier, will be zero, indicating 

absence of product of inertia terms. One important thing you should note down that, the 

principal directions, the principal moment of inertia, the principal moment of, principal 

moment directions, and also inertia, depends on the point of consideration. So, if in, if 

you take any body, so, if you are considering what will be the principal moment of 

inertia about this point, so, it will be different and the corresponding principal moment of 

inertia direction will also be different. If you consider another point, which is located 

here, so, principal moment of inertia will again be different; and the corresponding 

direction also becomes different. This is a very, this is the characteristic which need to be 

taken care of while developing the equation. So, we stop here, and in the next class, we 

can, we will start developing the equation of motion. Thank you very much. 


