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We will continue our discussion on one dimensional gas dynamics and we will try to 

derive some very important relationship which are quite useful and may be used in many 

situations. Let us say the energy equation for one dimensional compressible steady flow 

is h plus half 2 square h constant. If the gas is thermally and calorically perfect the 

enthalpy can be written as C p T and the equation becomes C p T plus half u square 

equal to constant and this constant can be written as C p T naught. 
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Now, C p can be expressed as C p T can be written as a square by gamma minus 1 or a is 

the local speed of sound. So, for calorically perfect gas the energy equation can also be 

written as a square by gamma minus 1 plus half u square. So, this equation can be 

converted to or a g 0 square by a square is m is the local mach number since a 0 square 

and by a square can be written as T 0 by T. So, this gives a relationship of the stagnation 

temperature ratio of the stagnation temperature to local temperature in terms of local 

mach number and specific gas ration further using isentropic relationship the stagnation 

pressure by local pressure is and (Refer Slide Time: 04:29). Similarly, the density can 



also be written as 1 plus gamma minus 1 by 2 m square to the power 1 by gamma minus 

1. 

Since considered the energy equation for when adiabatic flow or the total enthalpy or 

total temperature remain constant throughout. So, in these relationship T 0 and a 0 are 

constant throughout the flow and can be taken as the actually reservoir conditions. 

However, the process may not be isentropic. Hence, the stagnation temperature and 

stagnation density or the local reservoir values they will only be constant if the process 

are isentropic deriving these relationship we have used the reservoir condition as the 

reference condition; however, on useful reference point can be taken as the point where 

the fluid sonic or if we may consider that where the mach number is 1 these properties 

are called then sonic properties and quite often they denoted by a superscript asterisk at 

the sonic point the flow speed u star at sonic point that is our aim is 1 u star is same as a 

star and the energy equation can be written as u square by 2 plus a square by and this 

implies a star by a 0 square; that is T star by T 0 is 2 by gamma plus 1. 
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Similarly, we can have the other relationship p star by p naught as 2 by gamma plus 1 to 

the power gamma by gamma minus 1 and these equations can be used even if there is no 

point in a flow where the mach number is really unity as in case of reservoir condition 

that (( )) stagnation point may not be present in the flow. But, the stagnation point always 

refers to a local condition that if the flow at that point or brought to rest adiabatically for 

temperature or enthalpy and isentropically for pressure. Similarly, local sonic condition 

can also be ensured in the sense that we may always think that the flow at that point or 

brought to the sonic condition adiabatically or isentropically as the case may be. This 

receives take a definite value if you have a fix if you have a known value for the specific 



gas ratio gamma for here it is usually taken as 1 point 4 and consequently these relations 

these values become T star by T 0 is point 833 p star by p 0 is point 528 and point 643 

the speed ratio in star which is given as u by a star is a very convenient quantity and used 

in many situations using the energy equation in the form this equation can very easily be 

obtained by substituting u star equal to a star in this equation (Refer Slide Time: 11:45). 

Now, this equation can be simplified to M star square equivalent to gamma plus 1 or 

alternatively M square is equal to this relationship. So, that is, if M is less than 1 M star 

is less than 1 if M is less than 1 M star is also less than 1 and M star is greater than if M 

is greater than 1. 
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The energy equation can also be written in the form 2 square by 2 plus gamma by 

gamma minus 1 p by rho for a perfect gas using the isentropic condition using isentropic 

condition p rho to the power gamma which implies p by rho to be p 0 by rho 0 into p by 

p 0 to the power gamma minus 1 by gamma. So, the energy equation then becomes ((no 

audio 15:31 to 16:17)). 
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So, this now then becomes the relationship between the velocity and pressure in terms of 

stagnation quantities in and one dimensional isentropic compressible flow and can be 

thought of is the steady state Bernoulli's equation for compressible flow for compressible 

flow that is that this now replace the conventional incompressible Bernoulli's equation 

which holds for incompressible flow, but not true for compressible flow in a 

compressible flow the dynamics pressure. That is, half density time square of velocity 

which is usually used to normalize pressure and forces is not the difference between 

stagnation pressure and total pressure. That is, in compressible flow in compressible flow 

dynamic pressure (( )) the dynamic pressure can be written as in this form ((no audio 

19:27 to 20:02)). 
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With this the pressure coefficient can be written as ((no audio 20:07 to 20:51)) in an 

isentropic flow this can this becomes with the help of stagnation pressure which remain 

constant throughout in an isentropic flow this ratio p by p infinity can be replaced as and 

using the local mach number this can further we written ((no audio 22:06 to 22:52)). 

Through what we see here is that in a compressible flow that are certain special feature 

that is the Bernoulli’s equation takes a completely different form. Then, its 

incompressible flow counterpart and the dynamic pressure here is not simply the 

difference between total pressure and static pressure with these additional important 

relationship which are mostly derive from the consideration of the energy equation. 



We look to now a very important relationship in compressible flow which is known as 

the area velocity relationship area-velocity relationship we know that in incompressible 

flow the conservation of volume flow rate gives us the direct relationship that flow 

velocity increases with the decrease in area and the velocity is inversely proportional to 

the constructional area in a tube ; however, in a compressible flow the relationship 

become different because of change in density and if we consider a steady adiabatic flow 

in a steam tube varying area in a steady adiabatic flow the continuity equation rho u a 

equal to constant the mass flow rate is constant or in the differential form this equation 

can be written as d rho by rho plus d u by u plus d A by A 0 you know incompressible 

flow the first term that is d rho by rho becomes 0 and we get our usual well known 

relationship that increase or decrease of velocity is proportional to decrease or increase 

of area; however, the change in density we use modify these relationship using steady 

flow Euler’s equation (( )) much… 

Using steady flow Euler’s equation we get u d u equal to minus d p by rho which can be 

written as minus d p d since the flow that you are considering we have all ready assumed 

steady adiabatic and in inviscid flow then this flows are isentropic and this ratio d p by d 

rho here ((no audio 27:37 to 28:15)). 
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Hence consequently we have this d p d rho is d p d rho isentropic and hence it is a square 

y. So, the Euler’s equation now then become u d u or substituting this in the differential 

form of the continuity equation we have ((no audio 29:38 to 30:29)). 

This is the area of velocity relationship in a compressible flow  

Now, let us see what happens at different values of mach number or at different flow 

condition when the mach number is 0 that is when the flow is incompressible we have 

which clearly shows that an increase in area gives a proportional decrease in velocity and 

a decrease in area gives a proportional increase in velocity which is quite well known to 

us from our incompressible flows  

Now, let us consider the case where name is greater than 0 that is subsonic flow we have 

the denominator here 1 minus M square is positive. So, d u by A is still proportional to 

minus d A by A; however, there is a constant at any particular subsonic mach number. 

So, the relationship qualitatively remains the same as in incompressible flow that is 

increase in area causes a decrease in velocity or decrease in area causes an increase in 

velocity; however, in this case since the constant is not unity rather a number more the 

more than unity the effect on the velocity is relatively greater than incompressible flow 

that is the change in velocity occurs at a faster rate; however, qualitatively still it remains 

the same that is if the duct is converging the flow will accelerate and if the duct is 

diverging the flow will decelerate  
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Now, let us consider the third case that is when mach number is greater than 1 or the 

flow is supersonic we now have (Refer Slide Time: 34:26) the right hand side 1 minus m 

square is now become negative and consequently the entire right hand side is now 

become positive. So, in this case d u by u is a positive constant let say K 2 and you see 

that the flow flow area changes into (( )) that is if there is an increase in area the flow 

speed increases and if there is a decrease in area the flow velocity decreases that is the 

flow supersonic flow now accelerate in a diverging duct, but decelerates in a converging 

duct which is completely opposite to that of incompressible flow  

Now, this how can this happen that when the area is increasing the flow velocity is 

increasing this is due to the fact that at supersonic speed the density decreases at a much 

faster rate than the velocity increase and flow the area must also must increase. So, to 

accommodate the same quantity of flow that to compensate the decrease in density both 

velocity and areas must increase  

Now, let us consider the 4th case that is when m is 1 at sonic condition now in this case 

since the denominator becomes 0 d u by u can only be finite only if d A by A is 0 that is 

the area of the duct reaches the optimum of course, this optimum in this case must be 

minimum because we have seen that in the subsonic flow the flow will accelerate if the 

area decreases and supersonic flow will accelerate if the area is increases if area 

increases consequently at the sonic speed the area must be minimum. So, or other way 



that the sonic condition can only be achieved where the area is minimum in a throat that 

is if a flow accelerates from subsonic to supersonic then the first part of the duct must be 

converging where the subsonic flow will accelerate and will reach the sonic condition 

where the area is minimum and then the area must increase further. So, that the 

supersonic flow can accelerate. So, a mach number unity can only be achieved where the 

throat is ; however, it does not automatically imply that if there is throat in a duct the 

mach number there will always be unity that of course, depends on the pressure or the 

prevailing conditions at the downstream and upstream; however, if the mach number is 

reached unity it must always reach at the throat of the duct and nowhere else. 

Similarly, we can also see that if we have a supersonic flow and we want to decelerate it 

then the supersonic flow must decelerate in a converging duct and reach the sonic 

condition at the throat and will again further decelerate in a diverging duct. So, a 

converging diverging duct is essential if we want to accelerate a subsonic flow to a 

supersonic flow or we want decelerate a supersonic flow to a subsonic flow of course, 

asymptotically. 

(Refer Slide Time: 43:05) 

 

Now, before you go to another topic let say that revise some of these things that we have 

already discussed today we had first derived certain important relationship using the 

energy equation in different from where you have obtained relationship between the 

stagnation properties and local properties also obtain the properties of at the sonic 



condition most often we have considered only perfect gases; however, for other type of 

gases these relations relations can be obtained provided we know the equation of state 

explicitly. So, that we can express the enthalpy in terms of temperature and other 

parameters we have also seen the form that the compressible Bernoulli equation takes we 

have discussed that dynamic pressure in a compressible flow is not simply the difference 

between the stagnation pressure and static pressure and we have expressed the free 

stream dynamic pressure in terms of free stream total pressure and free stream mach 

number we have obtained a relationship for the pressure coefficient in terms of free 

stream properties and local mach number and then finally, we have discussed the 

compressible flow area velocity relationship where we have seen that we obtain the 

classical incompressible flow flow area velocity relationship from the compressible flow 

relationship where mach number is 1 in this context we also seen that when the mach 

number is very small that density changes are also very small and usually they can be 

neglected and density can be treated taken as a constant which of course, we can see 

from these particular relationships (Refer Slide Time: 43:05) d rho by rho is equal to 

minus M square d u by u which clearly shows that when M square is mach number is 

very small d rho by rho is negligible and density can be taken as constant  

We have also seen that if the flow is subsonic the area velocity relationship is 

qualitatively same as that for the incompressible flow that is area increase in are is 

associated with decrease in velocity and vice versa; however, in this case the e ffect on 

the velocity is relatively greater than in incompressible flow we have seen that you know 

compressible flow supersonic flow the area velocity relationship changes qualitatively 

that is in a supersonic flow opposite happens when the area increase the velocity also 

increases and when the area decreases velocity also decreases that is a supersonic flow 

decelerate in a converging duct and will accelerate in a diverging duct opposite to that of 

incompressible or subsonic flow  

We have also seen that the mach number unity can be achieved only where the area is 

minimum of course, in a real situation where that that that mach unity will be achieved or 

not depends on the upstream and downstream flow conditions; however, in any situation 

if unity mach number is achieved in a flow that will always be achieved where the area is 

minimum and we have seen that if we want to accelerate a flow continuously from 

subsonic to supersonic then we must have a converging diverging duct where the 



subsonic flow will accelerate to the sonic condition through the converging part and at 

the throat the flow will reach sonic condition and then downstream the diverging duct the 

flow will accelerate and this also we have discussed that that in a supersonic flow the 

density decreases at much faster rate. So, it both velocity and area must increase. So, as 

to satisfy the continuity equation that is to maintain the constant mass flow rate we 

should also point out 1 particular fact that when the mach number is very close to 1 then 

the denominator in the area velocity relationship 1 minus m square is very close to 0 and 

the flow near the throat is very sensitive to the changes in area with this we will now 

consider some specific few problems in one dimensional flow and the first case that we 

will consider is flow through a constant area duct  
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Let us say we have a duct of constant cross section. Let us consider 2 stations; in that, 1 

and 2 in incompressible inviscid incompressible flow this problem has just unique 

solution that all flow parameters at station 1 and station 2 must be the same that is 

pressure and velocity at station 1 and station 2 must be same and no other solution is 

possible. However, in compressible flow we will see that besides this condition of 

uniform flow we can also have a completely different type of flow which is possible that 

is in compressible flow there are 2 possible solutions for this problem 1 solution is of 

course, the incompressible solution that is the flow is uniform throughout no change the 

other solution as you will see subsequently is a jump solution that is the flow parameters 

at station 1 jumps to at station 2. 
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To look into this problem little closely and to find this second solution let us consider the 

flow problem this way let us satisfy the conservation laws at the 2 stations let us say the 

properties at station 1 are denoted by subscript 1 and those at station 2 are denoted at 

denoted by subscript 2 then for a constant area the continuity equation become rho 1 u 1 

equal to rho 2 u 2 the momentum equation become p 1 plus rho 1 u 1 square into p 2 and 

the energy equation become you take mostly as a (( )). 
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Now if we satisfy this energy equation in the integral form at station 1 and station 2 then 

there is no restriction on the flow between station 1 and station 2 that is we may have 

some region of non-equilibrium between station 1 and station 2; however, only 

requirement is that flow conditions at station 1 and station 2 must be at equilibrium and 

the equations in integral form apply so; that means, in this case we have the possibility 

that between station 1 and station 2 there might be a region of non-uniform non-

equilibrium that is where the flow is not reversible or can be non-isentropic that there 

might a region of non-isentropic flow between 1 and 2; however, at region 1 and region 2 

the flow is at equilibrium. 

However, there is again further no restriction on the side of these non-equilibrium or this 

dissipative (( )) as long as the station 1 and station 2 or the different stations are outside it 

this non-equilibrium region may be idealized to be a very thin extremely thin region or 

almost a line and this station 1 and station 2 can be thought of as the 2 sides of the line 

and then solution jump solution is jump across a thin line and this is usually then is 

called this discontinuity is called a shock wave of course, a real fluid cannot have an 

actually actual discontinuity and this is just an idealization of the very high gradients that 

actually occur in a very thin region of shock wave that is shock wave in the real flow is 

basically very thin which is idealized in this case to be just a line and in a real flow over 

this thin region there is very high gradients of velocity and temperature and consequently 

they produce large viscous stresses and heat transfer; however, it is restricted within the 

shock and that is over that very thin region and in this case in the idealized case within 



that line and outside that line the flow conditions remain equilibrium and our 

conservation laws in this form are applicable. 

Now, we take the momentum equation that is this equation and divide it by the 

continuity equation that is we write it in this way p 1 plus rho 1 u 1 square by rho 1 u 1 is 

that is we divide the left hand side of the momentum equation by the left hand side of the 

continuity equation and the right hand side of the momentum equation by the right hand 

side of the continuity equation this gives us u 1 minus u 2 using perfect gas relationship 

we can write this to be now using the energy equation of perfect gas energy equation of 

perfect gas in terms of speed of sound we write ((no audio 56:23 to 57:09)). 
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This equation now we can simplify to u 1 u 2 to be a star square which is known as 

Prandtl-Meyer relation we also can express this relationship in terms of speed ratio 

which gives M 2 star and this states that if at station 1 the speed ratio is less than 1 at 

station 2 the speed ratio is greater than 1 and vice versa that is now we have earlier seen 

that the speed ratio is less than 1 if the flow speed is subsonic and if the flow speed is 

supersonic the speed ratio is greater than 1. So, it shows here that if station 1 is subsonic 

then the station 2 becomes supersonic or alternatively if station 1 is supersonic then 

station 2 will become subsonic that is it is possible to have a jump through the shock 

from supersonic to subsonic as well as subsonic to supersonic as far as this relationship is 

concerned; however, there is nothing within this relationship that says whether this is a 



real possibility or not from the physical ground of course, we can anticipate that the 

perhaps the accelerating jump is not possible and increase in velocity is quite unluckily 

unlikely if there is some dissipative processes in action that is through a dissipative 

region the flow velocity is not likely to increase rather it is likely to decrease. So, 

physically we can say that supersonic, subsonic to supersonic jump is perhaps not 

possible while supersonic to subsonic jump is quite possible; however, this will further 

see clearly considering the second law of thermodynamics which ensures the possibility 

of a physical process we will see whether this is really possible or not subsequently. 

However, to continue further (( )). 


