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So, we will discuss second law of thermodynamics today. Of course, since it is not a 

course on thermodynamics we will not have a full proper discussion on second law; we 

will just have just brief discussion in the form of recapitulation. Now, second law of 

thermodynamics is very important physical law. See the first law that, express the 

conservation of energy or in a change, what type of change the energy will experience, 

but it does not say whether a particular physical process, is possible or not. It simply says 

that in a physical process, the energy will be conserved, the heat added to the system, and 

work done on the system, will increase the energy of the system. But, there is nothing in 

this law, which clearly say whether a particular physical process is possible or not, and 

the second law exactly does that, that is second law tells us, whether a particular process 

will be possible or not. The second law of thermodynamics are expressed in some 

classical statements, but exactly in those classical forms, they will not be very useful to 

us. So we will try to get the expressions that are directly useful to us. 
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 This indicates the possibility of a process, or decides the possibility of a process, and in 

doing so, it brings in the concept of a new state variable, known as entropy, as the first 

law brings in the concept of inter line energy. Similarly, the second law brings in the 

concept of entropy. It also provides a mean to, define absolute scale of temperature, that 

is that the zeroth law brought in the concept of temperature. However, the actual measure 

of absolute scale temperature is given by the second law. As we have mentioned that, 

there are several classical statements of second law, there are several classical statements 

of second law, and the several classical statements, and the most important of them are 

Kelvin Planck Statement and Clausius Clapeyron or Clausius Statement. Now, Kelvin 

Planck statement said, that it is impossible for a heat engine to produce network, working 

in a complete cycle. If it exchanges heat only with bodies at a single fixed temperature. It 

is impossible for a heat engine to produce network, in a working in a complete cycle, if it 

exchanges heat only with bodies at a single fixed temperature; that is what, is the Kelvin 

Planck statement.  

And similarly, the Clausius Clapeyron statement, says that it is impossible to construct a 

device, which operating in a cycle, will produce no other effect than the transfer of heat 

from a cooler body to a hotter body. Just repeat the Clausius statement once again, that it 

is impossible to construct a device, which operates in a cycle, and produces no effect 

other than the transfer of heat from a cooler to a hotter body. Now, as we said that these 

classical statements are, not directly useful in our context, and of course these, from 



these classical statements we can obtain the useful statements or useful form of the law, 

which are of direct use to us, but that is a subject matter of a full course and 

thermodynamics, and here we will not go in that approach, rather we will straight away 

get what it says. Now, let us think about any change and again come back to our 

indicator diagram.  
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we know in the indicator diagram, let us say it is that indicator diagram p and v or one by 

rho. Any point represents a state, and, so if we consider any line that represents a 

succession of change. Now of course, we can draw lines which define the direction of a 

small reversible change, and also we can define lines; which gives small reversible 

change without gain or loss on heat. See let us say that, this as an example, let us think 

about a line, say this line represents small reversible change, without gain or loss in heat. 

Let us say this is what is defined from this point. Now of course, it is possible to define 

such lines from each point, and get a family these lines. So line drawns from each point, 

will give us a family of such lines and these lines are, of course called adiabates. These 

lines are called adiabates, because they represent adiabatic reversible change. Now if we 

define, then say again from this point, goes on like this, and consequently we have, if we 

define from each point, of course we will have a family of such lines, and so on.  

Now on these lines, the changes represents have reversible change, if we think about 

changes in succession, every time a small change very slow change. Then these lines, 



can be regarded to define equal value of some new function of state. So these lines can 

be or this family of adiabates, can be regarded to define, equal value of some new state 

variable. And the second function, discuss the property of this; the second law, discuss 

the property of this function. Now, second law implies the existence of this property, 

second law implies the existence of this property, existence of sorry, existence of this 

function, and defines its property. This state variable or state function, is called entropy. 

Entropy is of course, an extensive property, that it depends on the mass, but we can have 

specific entropy. 
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The specific entropy, which is intensive property and extensive property. And the 

intensive property that is specific entropy or entropy per unit mass, we will let us denote 

it now by S. So, the second law actually tells us that, those families of adiabates, are lines 

on which this entropy is constant. So the reversible adiabatic, those lines as you have 

seen that those particular adiabates represents a reversible change. So it says that, in a 

reversible adiabatic change, entropy remain constant. So it says that in reversible 

adiabatic change entropy remain constant. Now, any process in which the entropy 

remains constant, is isentropic process. The process in which there are no heat transfer, 

and the process are reversible, those process are called isentropic processes. And with the 

help of this, the second law can be expressed also in this form, that in a reversible 

transition from one equilibrium state to another equilibrium state, the increase in entropy 



is proportional to the heat given to the fluid. So another statement or other in a more 

useful form, so another statement of.  

Of course as we mentioned before that this statement of can be obtained from those 

classical statements, due to Kelvin Planck and Clausius. This says that in a reversible 

transition, from one equilibrium state to another, that is let us write in a reversible 

transition from one equilibrium state to another in a reversible transition , from one 

equilibrium state to another. The change in entropy, is proportional to heat given to the 

system. And the constant of proportionality is also a state function, that depends only on 

temperature. What it says that, if there is a reversible transition from one equilibrium 

state to another, then the change in entropy will be proportional to the heat given to the 

system, if no heat is given the entropy will not change. And the constant of 

proportionality is also a state function, and it depends only on temperature. And the 

reverse, the inverse or reciprocal of this constant of proportionality, is defined as the 

absolute temperature. 
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The reciprocal of the constant of proportionality, is the absolute scale temperature. So we 

see that it defines the absolute scale temperature also, and mathematically this is written 

as, that change in entropy delta S is delta Q by T, heat added reversibly. And in general, 

however the greater than sign implies, irreversibly add equal T is for when heat added 

reversibly. These are also possible to get from those Kelvin Planck statement or Clausius 



Clapeyron statement. Now this also has another significance. It also says that, it also 

implies that work can be converted completely to heat, but heat cannot be converted 

completely to work, or heat is a degraded form of energy. That is this also implies, this 

as an implication, that work can be completely converted to heat, but heat cannot be 

completely converted to work. Meaning; heat is a degraded form of the energy.  

So, you see that the second law gives us various possibilities, that if a process is 

adiabatic and reversible then there will be no change in entropy, that is adiabatic 

reversible changes are isentropic change. In any other reversible change, the change in 

entropy will be proportional to the heat added. In other if the change is irreversible, then 

the relationship will change to this form, that is delta Q will be less than T times delta S, 

but for reversible case delta Q will be T times delta S. Now, particularly we interested in 

that reversible adiabatic or isentropic processes, and a second law consequence of second 

law that in adiabatic reversible change, entropy will remain constant, will not change. 

And in adiabatic second law reversible change, the entropy cannot decrease, diminish, 

the entropy will increase. 
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Now, let us consider a small reversible change, where work is done by compression on 

the system. The system in our case, will always consider fluid, by compression only. 

Since you are considering our small reversible change, then delta Q is T delta S. Hence 

that first law, delta Q is T delta S, that equal to delta E plus p delta v. So this is a 



combined form of first and second law. So combined form second law. Now, in this 

equation all the variables are state variables, all the variables are state variables, and 

hence this relation, must be ready for any infinitesimal transition, in which work is done 

by compression, whether reversible or not. So all are state function, contents on equation 

contains only state function, and holds for any small change, reversible or not. The only 

restriction is, that the work must be compression work. It is not valid for any other type 

of work done on the system. Now of course, if the process is not irreversible, that is the 

equation holds, as we mentioned that, even if the change is not reversible. In other way 

that these equation will holds, even if the change is not reversible, but if the change is not 

reversible, then this is not the heat and this is not the work.  
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 That is the relation holds for irreversible process also, but then, and that is these are not 

true, the heat added is not T delta S. The work done is not minus p delta v, but the total 

change; that is T delta S is equal to delta E plus p delta v still holds. We will now define 

few more important state variables or state functions, and one very important state 

function; let us say few more important state functions, enthalpy. Enthalpy is also again 

an extensive property. So we have a specific enthalpy, which is the intrinsic property. 

And enthalpy per unit mass. So this enthalpy per unit mass will denoted by H, since here 

we are defining all capital letters, let us use letter. So this H is defined as E plus p v, 

which gives in the differential form d H is d E, plus p d v plus v d p, and we have already 

seen that d E plus p d v is T d s, so that is. And this imply that, for small reversible 



change at constant pressure, d H equal to T d s is equal to d Q. ((no audio 37:06 to 

37:53)) And, since it is reversible T d s is. And, this imply that the enthalpy, basically 

represents the total heat content of the system, and also if you look to these equation, this 

also involves only state variables, and hence apply for both reversible and irreversible 

changes. 
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One more important state function is Helmholtz free energy, and this per unit mass, we 

define this by say F, and the definition of this F is E minus T S. So this be d F equal to d 

E minus, minus d E minus T delta S is p d v minus. So, then in a reversible small change, 

at constant temperature d F equal to minus p d v or equal to the compression work or 

useful work. So, in a small reversible change at constant T, we see that if, we have an 

isothermal small change or isothermal small reversible change, then the gain in free 

energy is work done by the work done on the system. So work done on the system in a 

reversible manner at constant temperature, is actually the gain in free energy or 

Helmholtz free energy of the system, and thus the Helmholtz free energy is related to 

useful work. The other free energy function is called Gibbs free energy, this is once 

again an another extensive property. This is also an extensive property like Helmholtz 

free energy enthalpy or entropy.  
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And Gibbs free energy per unit mass, G is defined as E plus p v minus T S, or you can 

write H minus T S, and hence you can write d G equal to d H minus T d S, minus S d T, 

and from the definition of enthalpy d H minus T d S becomes v d p minus s d T. And this 

Gibbs free energy also is, associated with or the available work output. Now with this, 

now we will try to derive few more important relationships. First of all let us consider 

that, we will be using say v and S, as the two independent variables. We have already 

stated that for any pure substance, any two state variables can be considered as 

independent variables, and all other state variables or state functions can be obtained in 

terms of those two. Earlier we expressed pressure and specific volume as two such 

independent variables, and express all other as a function of pressure and volume. But, 

now let us take v and v and s are the two independent variables, and hence all other can 

be expressed as functions of v and S. All other state variables can be expressed as 

functions of v and S, and this already we have. Now, this imply that we have d E d v at 

constant entropy equal to minus p.  
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And, also d E d S at constant volume equal to T. So we have obtained new definitions of 

pressure and temperature. Now, we can evaluate the second derivative of.  
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We can differentiate the first relation; that is d E d v at constant entropy as minus p, so 

we differentiate it again with entropy now, so this makes. Similarly, we have d E d S at 

constant volume is T. Now, we differentiate this again with v at constant entropy, and 

that gives us, and combining these this gives us d p d S v as minus d T d v S. This is one 



of the Maxwell’s law. Now, also from here this d T d v S, can be written as d T d p at 

constant entropy, into d p d v at constant entropy. 
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Similarly, we have d p d S at constant volume is minus d p d v S, into d v d S p, and that 

is becomes minus d T d v S. This is a thermodynamic identity. Now you can mark this 

first equation as A, and this as B, and combining we get d v d S at pressure is d T d p at 

S. This is also another Maxwell law. This relation can also be obtained in an another 

manner, that is we could have defined second derivative of H in two different manner, as 

we have done here for second derivative of E in two different manner. Similarly, we can 

define second derivative of H in two different manners. Second derivative of F and G 

also into two different manners, and get total four relations, and all these four relations 

are called the Maxwell’s relations. So we have four Maxwell’s relations or four Maxwell 

equations. We have d p d S at constant volume is minus d t d v at constant entropy.  

We have d v d S at constant pressure into d T d p at constant entropy, d v d T at constant 

pressure, will do minus d S d p at constant temperature. And the last one d p d T at 

constant volume is. These four relations are known as Maxwell’s relations, and they are 

quiet useful in many thermo dynamical relationship, and at least in one or two cases we 

will use them. So what we have done today, first we have discussed about second law, 

and the concept of entropy, and the absolute scale of temperature, and based on that we 

have subsequently defined, few more important thermo dynamical state functions, 



enthalpy Gibbs free energy, and Helmholtz free energy, and final we have obtained the 

Maxwell’s equations. So further useful relations that are often used in high speed 

aerodynamics we will derive subsequently in our next class. 

 


