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 Welcome back. So, we continue discussing this flapping-lead model dynamics. So, just 
to recap with that, we have looked at the simplified system with no offset and considering 
different combination like with rotation without rotation with spin without spin and both 
having spin and rotation with no offset now we'll extend that same analysis for with the 
offset case so now what we'll do again we'll go case by case so first we'll take rotation 
ring and offset. So, in general the real blade does not behave as if it had a hinge spring  
right axis of axis of rotation. So, what that means, in general, what it is that omega square 
would never be equals to omega in our square plus omega square, which we have found 
earlier, since the real blade doesn't behave as it had a hinge being right at the axis of 
rotation. So, now to correctly model blade motion and the blade dynamics, which are 
represented by both omega r and omega nr, we need to properly describe the expression 
for that. 

 
 So, how we can, we can achieve the same by including the non-dimensional  Inch. 
Upside. Okay. So. 

 
 That's how. We are going to. Find that. Out. Okay. 

 
 That is. E. So this. E. can be thought of as the fractional distance from the axis of 
rotation to the location of the blade hinge. 

 
 So, now what we can do that we can actually estimate all the constant of the hinge-spring 
model. Once, we know the natural frequencies of rotating and non-rotating real blade. So, 
that means knowing omegaR and omegaNR of real blades allows to estimate the 
constants in hinge-spring model. So, once we know that. we can actually estimate all this. 
 
 So, all this constant in these things and the offset can be defined as two into minus one 
divided by three plus. So, this is as per the literature given by Eggleston and Stoddart in 
their book. So, where Z is given as omega R square minus omega N square by omega 



square. So, we have this offset, which is the fractional distance from the axis of rotation. 
And, this is what we have shown in the picture here. 

 
 if you remember this that is what we have taken that e introduced here which is the offset 
so, okay! so, now in addition to the offset um i mean or this can be accounted  by 
adjusting the moment of inertia. So, that means this offset can be adjusted by accounting 
in moment of inertia. So, the mass moment of inertia now will have Ib equals to mB R 
square by 3, 1 minus e whole cube. So, this is mass moment of inertia of the hinge blade, 
okay! so, this is where you take into account the then my flaping spring constant that is K 
of beta can be estimated as OmegaNR square into ib. So here, one has to be careful that 
the rotating and non-rotating natural frequency may be calculated by other method or 
from measurement and data, whatever is available. 

 
 So, what it shows that the flapping characteristics  flapping characteristics of the blade 
can model by uniform blade with an offset hinge. Uniform blade with an offset hinge. 
and spring that has one degrees of freedom and that responds in the same manner to 
forces as the first vibration mode of the real blade. So, essentially this response in the  
same manner to forces as the first vibration mode of the real plate. Similar constants can 
be obtained for lead-lag motion of a real blade. 

 
 
 Torsion requires a  Deepness constant not require any offset hinge model. Okay. So, with 
all this constant, the blade model allows for three degrees of freedom. So, all these, all of 
these allows three degrees of freedom, which are flapping  lead-lag and torsion. So, what 
we now, once we introduce that offset characteristics in the mass moment of inertia, then 
the spring constant can be obtained. 

 
 And, then one can find out this flapping characteristics, but obviously, which is modeled 
with an uniform blade with an uniform offset and hinge. So, that would have one degree 
of freedom and that responds in the same fashion to the forces as the first vibration mode 



of the real blade. So, that means how the real blade would respond to the vibration mode, 
this would behave in the same fashion so, that you obtain the similar kind of 
characteristics. then also, if you include the lead-lag motion of the real blade then we get 
some constants then torsional stiffness can be included so, with all these all the three 
degrees of freedom would be included which includes flapping lead-lag motion torsion 
and then we can write the complete equation of the full flapping blade model with free 
motion So, that kind of, so we write equation of motion, full cupping blade model, which 
is free motion. 

 
 Okay. So here,  including gravity and an offset. So, the free motion looks like beta 
double dot omega square one plus epsilon g cos psi plus K beta by Ib. Complete system 
where g is the gravity term which is kind of equals to mb  rg by Ib. rg is the radial 
distance to the center of mass. Epsilon is the offset term. 

 
 which is given as p e divided by two into one minus e is the azimuth angle. Okay. So, 
this is what the complete equate looks like that  includes the free motion of the full 
flapping blade model. That means there is no extra force in term. So, that would be our 
next set of complications to incorporate. 

 
 This is where you have all the term. Now, we try to kind of  derive this how we obtain 
that okay, now we'll go to the derivation of this derivation of free motion so let us define 
a system here first okay, We have this. So, this is GDM. This is Psi. This side R cos beta 
omega square DN. 

 
 This term is G. So, this is kind of a flapping blade viewed from down wind direction. 
Here, g is the gravitational force. m would be mass. r is radial distance from axis of 
rotation. beta is starting angle omega is rotational speed azimuth angle. 

 
 Okay! so, here so, this is, so what we get is that the blade is turned out of the plane of 
rotation towards the veer by the flapping angle beta. So, and the azimuthal angle is psi. 
So, if you remember that. So, this flapping angle beta is the blade is turned out of the 
plane towards the veer. And zero azimuthal angle corresponds to the blade tip pointing 
downwards. 
 
 This is what if you remember earlier diagram when we were talking about the 
aerodynamic analysis. An azimuthal angle or it increases along the direction of rotation. 
Okay. And the flapping angle is positive in the downwind direction. 



 
 
 Okay. Now, what we do in our further discussion that it would inputs may vary as the 
sign or the cushion of the azimuth angle. will commonly use that as a cyclic. So, 
essentially cyclics the term that we use that is cyclics of cosine or sine cyclics. Okay. So, 
essentially these are the cyclic or cyclical inputs of the turbine response. 

 In this particular figure here, you see two forces act along the axis of the blade, on the 
element of the blade with mass dm. So, this is what two forces. The gravity component 
due to the weight of the blade depends on azimuth. Now the equation of motion of a 
flapping blade without an offset  which is subject to restoring forces due to rotation 
restoring forces due to rotation which is essentially centrifugal force  gravity, the 
inspiring and inertial forces due to acceleration. That is what we will develop here. 

 
 Okay. So, essentially now first we will start with the modified equation. So, the modified 
equation of motion for a blade with an offset is then first discussed and then the full 
equation would be developed which will include the offset. Now, we will draw another 
picture here where we will so, one is r square beta omega square dm, r beta double dot 
dm, the other force is g cos psi dm this is beta, this is r, omega, here you have k beta, 
okay! this is lapping  blade viewed from above okay, now so this is essentially looking 
down the y double prime axis So, here we also include this flapping in constant and 
flapping acceleration. So, this includes a beta and flapping acceleration. 

 
 OK. So, both of them are included. So, now we can summarize all these forces. So, first 



you have centrifugal force. So, it starts to bring the flapping blade. Flapping blade. 
 
 back into the plane of rotation. So, this magnitude depends on the square of the speed of 
rotation and it is also independent of blade as in centrifugal force always act on the center 
of  mass of the blade and which is perpendicular to the rotor's axis of rotation. So, now 
from this particular figure here, what we have drawn, we can write that Fc is r cos beta 
omega square dm. Okay! And, the moment about the flapping hinge axis, so, the moment 
about the flapping hinge axis which is Mc and due to Fc we get Mc equals to r sine beta r 
cos beta omega square dm okay! so, we get both centrifugal force and the moment. So, 
what it does, so if you see this particular picture here, which is looking down to that Y 
double prime axis, which includes both the spring constant K beta and the flapping 
acceleration. And then we summarize all the different forces. 

 
 
 So, to start with,  we have included this centrifugal force which is going to bring back 
the flapping blade into the plane of rotation so we have both flapping force and the 
centrifugal force and the moment so, the next one we will consider gravitational force so, 
acts On the. 

 Center of the. Center of. Mass. 

 Of the. Blade. So. When the. Blade is. Up. gravity tends to increase the flapping angle 
and when down it tends to decrease it. So, this is independent of rotational speed. There 
is no dependency on the rotational speed. So, this is what we get. essentially now, we 
have this we want to derive this free motion so, we have this blade that has been kind of 
given that and then we are considering looking down through the y double prime axis and 
considering each of these forces start with centrifugal force, then we are talking about 
gravitational force. 

 So, we'll stop here and continue this discussion in the next session. 


