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 Yeah, we'll come back. So, we'll continue our discussion on this mechanics and the 
dynamics of the wind turbine. So, the last session, what we discussed about the Euler 
beam equation, okay, essentially the static beam, essentially static beam equation,  or 
Euler Bernoulli equation. And from this equation, we have looked at one of the example, 
which is cantilever beam with end load. Now, we'll continue the same and look at other 
example of cantilever beam. with constant loading. 

 
 So, we had this. So, second example that we will look at it cantilever beam with constant 
loading. okay so, what we can we can draw the picture for cantilever beam with constant 
loading so, let us have that let's say this is the beam and you can have  continuous loading 
okay which is let's say, uh load q and q of x so this is x q of x is constant along beam so, 
what we have ux equals to q constant and EI is also constant okay and so, we can have 
this diagram we can get this diagram once we find out the system okay so, let's keep that 
so what we have here u by e dot i is d4 by dx4 okay  So from here what we have this Q 
by E dot I X4 by 24 C3 X cube C2 X square C1 X plus C naught. So, this is what we get 
as a solution. 

 
 now we can put the boundary condition so like we have at 0 0 which gets c 0 equals to 0 
and also we have d of is 0 that gets c 1 equals to 0  so we will have m of x equals to d2w 
by dx2 e dot i and where m at l is 0 d2w by  L is zero. So, what we get QX equals to 
DMX by DX and Q of L that means D3W by is zero. So, let's say this is  Solution two, 
now what we can have, we can use this boundary conditions and what we can write, let's 
say from equation two, we can write x squared by two plus six three x plus two c two at x 
equals to l equals to zero. 



  

We can write,  essentially let's say two this is three this is four so this is from three from 
equation four we can write x plus six three minus one by six  then from here what we get 
l square by 2 minus l square we get 1 by 4 l square so eventually we get its q by ei x 4 by 
24 l by 6 x cube in squared x squared which is u x squared by ei x squared minus or lx 
then mx equals to ei  L squared by two. And, we have u x equals to u into x minus L. 
 
 So these are the solution for that. And, if you now plot this, this is x equal to L. And this 
is MX. This goes like like that. And this is your. 



 
 
 You have X. So the card would. Look like. That. 

 Okay. So, this is how you have the this beam with constant loading. You can have. Now 
we can. see the maximum stress at boundary. 

 Okay. So, we had this  This is compression. This is tension. So, this is max stresses at 
surface. This is 2D. Now, what you have sigma is E into epsilon. 

 Epsilon is small z, d2w by dx2, mx, i of x, z equal to d, sigma max, ed, mx,  yeah so 
that's uh gives you an idea about the maximum stress at the surfaces where it's  getting 
active. Now, we can see some, I mean, we can expect some numerical value. Let's say, if 
sigma max equals to 250 MPa,  and D equals to one meter. So, one can find out M max, 
what would be M max? So, here, since D equals to one meter, you have I, which is,  pi by 
four d four or i by d pi by four d cube m max would be sigma max i by d that is 250 into 
pi by four into one cube  So effectively you get two into 10 to the power eight Newton 
meter. You can see a very high moment. So, typically a higher moment will lead to  
plastic deformation. So, that is what is going to happen.  



 

Now we can look at what we can do  look at the loads at blade so we can look at the loads 
at blade root okay so in clockwise direction so  So typically for a blade in an ideal design, 
the distributed load, which is Q of R is given by  one by b the thrust of the corresponding 
annulus the first the first of the corresponding annulus okay So, if we recall, let's say if 
this is the root, and there is a grid like that, typically, and  this can be R and this is two-
third of R. So essentially at this point assuming all first force is  and B is number of 
blades let's say 3 and this would be R complete that's the radius of the rotor blade okay so 
what we have already have df equals to 4a 1 minus a half rho q infinity square  2 pi r dr 
which is essentially this was corresponding to coefficient of thrust into a half rho u 
infinity square 2 pi r dr that was equals to b into q of r and q of r is So, this already we 
have seen. Now, what one can do, now the bending moment  bending moment at the 
blade root that is r equals to 0 can be found as m of 0, 0 to r, q r, r dr. 

 
 So what we can write  1 by B CTA up rho Q infinity square 2 pi 0 to R R square D R. 
This is R cubed by 3. So, what we have 1 by B  cta of rho u infinity square into two-third 
pi r cubed one by b two-third r cta  of rho u infinity square. So, this is essentially our total 
force on actuator disc. This is total force on actuator disc. 



 

 
 
 And similarly, what you can have the shear force, shear force at blade root is trivially 
bound by  U of zero Ft by B. So, one can think about that moment is M of zero is Ft by B 
which is total force on blade into two-third R  that is two-third of radius that is what we 
get the moment. I mean provided here the assumption that is there that assuming all 
forces acting on  And, we get the right bending moment. I mean, one can illustrate with a 
simple example, let's say. And, we have a blade like that at R0. 

 
 So, here you have q0, here you have moment 0. And everything acting at, let's say, 2 
third by r. Then f t by 3 at 2 3 by r on each blade. OK. So, what you have at P equals to P 
by 1 minus A into U infinity. 

 
 
 So, let's say 1 mega Newton or 6 megawatt at U infinity equals to 9 meter per second 
and radius is 75 meter. then, what will happen is that m of zero two-third by r into which 
is kind of 16 mega newton meter okay so this is what the measure of the bending moment  
that you have. Okay. Now, similarly, what can say, let's say what is the maximum 



bending stress  at blade rotor. Obviously, you can, I mean, this is regarding the annulus 
cross section. 

 
 So, what we have, if you have a, yes,  R1, R2, and this is D equals to R2. This is your 
neutral axis. So here, R2 my R1 equals to B, which is less than R2. So, my moment of 
inertia pi by 4 r2 to the power 4 minus pi by 4 r1 to the power 4 which will be pi r2 cube 
b. So i by r2 square into b. 

 
 Then I have sigma max r2 by i  M0 which is M0 by pi by R2. So, essentially M0 by R2 
square into B. So, let's say r2 equals to one meter. Sigma max equals to 250 megapascal. 
Then one can say how thick should the blade root be. 

 

 
 
 So, one can kind of try to find out the thickness of the blade route. I mean, the one that 
we got that from here, straight away you can find out the thickness, which you can say m 
naught pi r two square into one by sigma max. So, if you put five mega Newton meter  by 
250 mega pascal one by 50 meter around two centimeter so you can easily estimate that 
the thickness of the root of the blade how much it would be i mean obviously we have 
kind of seen that  how along the radius these things changes okay so root to half things 
would vary and that kind of variation one has to bring into the design purposes so these 
are simple talking about the basic structural analysis. These are again basic structural 
analysis, but one has to understand the complete picture about this basic structural 
analysis. And now what we would do, we would also look at the other part of the 
structural design. 



 
 
 and then connect back things with the aerodynamics forces like that. Okay. So, we'll 
continue the discussion in the next session. 


