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In this lecture, we'll be discussing the concept of convolutional integral from the concept  of 

convolutional sum.  Then we'll apply Laplace transform on this convolutional integral and how 

we'll find  the linear relationship between input and output.  From this linear relationship, we'll 

find the transfer function concept, which will  relate between input and output.  Also, we'll be 

discussing why we have to assume zero initial conditions for finding the transfer  function, because 

if you assume non-zero initial conditions, the principle of superposition  cannot be applied.  Then 

we'll conclude the lecture with some important properties of Laplace transform,  which we'll be 

using in the later lectures.  In this lecture, we'll be finding the transfer function for our system. 

 

Here we'll be using the concept of convolutional integral and how we can find the transfer function  

from this concept.  If you remember, we have done this part already.  If you remember, if you have 

LTI system, and if you apply some input 𝑥(𝑛)  and  the output, the impulse response, we can write 

𝑦(𝑛) = ∑ 𝑢(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=−∞

 

 So this is how we came up with this expression. 
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 Now we'll be using this convolutional sum.  How can you use this concept to find the transfer 

function?  Now from this, we can write in the series form 

𝑦(𝑡) = ∑ 𝑢(𝑘)ℎ(𝑡 − 𝑘)

∞

𝑘=−∞

 

This is also the same thing, basically the same expression we are writing in, just which is instead 

of n which is the time.  Now the summation of the above equation number 1, is  replaced by the 

following integral.  So we can write in terms of integral, instead of summation 

𝑦(𝑡) = ∑ 𝑢(𝜏)ℎ(𝑡 − 𝜏)

∞

−∞

 

This expression also can be written from this convolutional sum.  And let me define this equation 

number 2.  Now this is actually called convolution sum and this  is called convolution integral 

because it is in the summation form and this is in integral  form equation 2.  Now we shall use this 

concept to find the convolutional Laplace domain.  Now it is in the time domain, now if you write, 

if you want to find the transfer function  from this approach is quite difficult. 

 

 So now we will be considering some indirect approach using the Laplace transform.  And for any 

function 𝑦(𝑡) , the Laplace transform, we can write  𝑌(𝑠) = ∫ 𝑦(𝑡) 𝑒−𝑠𝑡𝑑𝑡
∞

−∞
    So this is basically 

we can write Laplace transform of 𝑦(𝑡).  And applying the convolution theorem here in place of 

𝑦(𝑡), let me write equation number 3, if you substitute equation 2 in equation 3,  in place of 𝑦(𝑡), 

we can write 

𝑌(𝑠) = ∫ [∫ ℎ(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏
∞

−∞

] 𝑒−𝑠𝑡𝑑𝑡
∞

−∞

   

 So here, since we are talking about the LTI system, and it means the linear time invariant  system, 

instead of this, we can write this expression,  we just change the time. So it is the same expression, 

the same value will come up, and it does not change if you shift  the time.  So that is possible.  

Now if you change the integration order, we can write 

𝑌(𝑆) = ∫ [∫ 𝑢(𝑡 − 𝜏)𝑒−𝑠𝑡𝑑𝑡
∞

−∞

] ℎ(𝜏)𝑑𝜏
∞

−∞

 

Let me write this is equation number 4, this is equation  number 5.  Now if you change the variables 

of the inner integral by defining  𝑡 − 𝜏 = 𝜂 , we get the following expression. 

𝑌(𝑆) = ∫ [∫ 𝑢(𝜂)𝑒−𝑠(𝜂+𝜏)𝑑𝜂
∞

−∞

] ℎ(𝜏)𝑑𝜏
∞

−∞

 



 Just we are changing the inner integral and we are replacing the time with  this parameter 𝜂 .  And 

we can further write from this expression 

= [∫ 𝑢(𝜂)𝑒−𝑠𝜂𝑑𝜂
∞

−∞

] ∫ ℎ(𝜏)𝑒−𝑠𝜏𝑑𝜏
∞

−∞

 

And from this we can write, this is basically U(S), this is the  Laplace transform of U(t) and from 

the second part we can write H(S). 

So from this we can write 𝑈(𝑆) 𝐻(𝑆).  This is a very very important equation from this expression 

for finding the loss of  function.  So now let me define it, what is this?  So here 𝑈(𝑆), I should 

write Laplace transform of the input time function and 𝐻(𝑆) is the  Laplace transform of impulse 

response. So when you are talking about what is the transfer function,  we have to write this 

Laplace transform of the response. 

So now by this operation the complicated convolution integral is replaced  by a simple 

multiplication of the transforms.  So now we need to interpret this thing that you have done here, 

how we can do more  treatment and how we can come up with a better understanding on transfer 

function.  Now let's have a transfer function 𝐻(𝑆) and we are applying some exponential  input 

function 𝑈(𝑡) = 𝑒𝑠𝑡    and the output from this transfer function  block can write 𝑦(𝑡) = 𝐻(𝑆)𝑒𝑠𝑡 .  

So here basically this is a complex number 𝑠 = 𝜎1 + 𝑗𝜔  , again this is the real  value, this is the 

imaginary part.  So now we will prove how we are getting this expression through the concept of 

convolution  integral. 

So here 𝑦(𝑡) = ∫ ℎ(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏
∞

−∞
   and  from this we can write ∫ ℎ(𝜏)𝑒𝑠(𝑡−𝜏)𝑑𝜏

∞

−∞
  .  Further we 

can write ∫ ℎ(𝜏)𝑒𝑠𝑡𝑒−𝑠𝜏𝑑𝜏
∞

−∞
   or we can write  ∫ ℎ(𝜏)𝑒−𝑠𝜏𝑑𝜏 𝑒𝑠𝑡∞

−∞
  .  So this is nothing but our 

𝐻(𝑆)  so we can write 𝐻(𝑆)𝑒𝑠𝑡   .  So this is what we are getting the same expression through  this 

proof.  Since we will be dealing with the linear system and also in the next few  lectures we will 

be dealing with the transfer functions and it will be assumed that the initial conditions for finding 

the transfer function is assumed to be zero. 

So why do we have to assume the initial conditions for finding the transfer function in the linear  

system assumed to be zero.  Let's look at why you have to assume.  So on the integral it conveys 

that −∞ 𝑡𝑜 ∞  and which implying that ℎ(𝑡)  may have values at any time.  So it can take any 

values from the −∞ 𝑡𝑜 ∞, so the initial condition is not equal  but for the causal system if you look 

ℎ(𝑡)  = 0  for 𝑡 < 0  .  So if I write in the ℎ(𝑡), basically if you write in the frequency domain you 

have [𝐻(𝑆) = ∫ ℎ(𝜏)𝑒−𝑠𝜏𝑑𝜏
∞

−∞
]   this is the function we have found here if you notice here. 

 

  So now if we assume the causal system, then for 𝑡 < 0   the ℎ(𝑡)should be zero.  So based on this 

condition we can write 𝐻(𝑆) = ∫ ℎ(𝜏)𝑒−𝑠𝜏𝑑𝜏
∞

0
   and correspondingly for causal system 𝑦(𝑡) =

∫ ℎ(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏
∞

0
. So that's why most of the system will be dealing in the classical contours of 



the causal  system ,we'll be assuming the initial conditions to be zero.  So let's look another way, 

what is the relevance, why you have to assume the initial  conditions to be zero.  So here if we 

assume a non-zero initial condition , the superposition principle cannot be applied or validated and 

in another condition  we are assuming that the system starts from an equilibrium point. 

 

  If you go back to the lecture's scenario, how the system got disturbed from the  equilibrium point, 

so if they start from the equilibrium point, note that the equilibrium point for the LTI system is 

always zero.  So that's why in the transfer function methods we'll be assuming the initial condition  

to be zero.  So now I'd like to highlight some important properties of Laplace transform and how 

we  can come up with the linearity or this differential or integral and how we can come up with 

some  standard Laplace transform of those functions because we'll be using very repeatedly in  our 

subsequent lectures those important properties of Laplace transform.  So first we'll be talking about 

linearity.  If “a” is a constant and ℒ𝑓(𝑡) = 𝐹(𝑆)  , then Laplace transform of 

ℒ{𝑎𝑓(𝑡)} = 𝑎ℒ𝑓(𝑡) = 𝑎 𝐹(𝑆) 

 

  Now we'll be taking another example.  Second part translation in time.  If ℒ𝑓(𝑡) = 𝐹(𝑆)   and 

𝑎 >  0 ,a is a positive  real number such that if 𝑓(𝑡 − 𝑎) = 0   for 0 < 𝑡 < 𝑎 , then we can write 

ℒ𝑓(𝑡 − 𝑎) = 𝑒−𝑎𝑆𝐹(𝑆).  So these are the functions we'll be using in our subsequent lectures. And 

third translation in Laplace domain. 

If ℒ𝑓(𝑡) = 𝐹(𝑆)  and a is a complex number then we can write ℒ{𝑒𝑎𝑡𝑓(𝑡)} = 𝐹(𝑆 − 𝑎)  .  Fourth 

is real differentiation.  If ℒ𝑓(𝑡) = 𝐹(𝑆)  and if 
𝑑𝑓(𝑡)

𝑑𝑡
   is Laplace transformable, then we can write 

ℒ {
𝑑𝑓

𝑑𝑡
} = 𝑆 𝐹(𝑆) − 𝑓(0+)  .  So here small 𝑓(0+) → the value of 𝑓(𝑡) in the 𝑙𝑖𝑚

𝑡→0
  approaching from 

the positive  side.  So this is the first term derivative, if you take the kth derivative  so if you have 

a function 
𝑑𝐾𝑓(𝑡)

𝑑𝑡𝐾   , if you want to take  the Laplace transform of this function we can write 

ℒ
𝑑𝐾𝑓(𝑡)

𝑑𝑡𝐾
= 𝑆𝐾𝐹(𝑆) − 𝑆𝐾−1𝑓(0+) − 𝑆𝐾−2

𝑑𝑓(0)

𝑑𝑡
… −

𝑑𝐾−1𝑓(0+)

𝑑𝑡𝐾−1
 

 

 So this is how we can find the Laplace transform of a derivative differential function. Now  we 

will take an integral and how we can find the Laplace transform real integral function.  If ℒ𝑓(𝑡) =

𝐹(𝑆)   and the indefinite integral ∫ 𝑓(𝑡)𝑑𝑡   is Laplace transformable then we can write 

ℒ {∫ 𝑓(𝑡)𝑑𝑡} =
𝐹(𝑆)

𝑆
+
1

𝑆
 ∫ 𝑓(𝑡)𝑑𝑡

0

−∞

 

 but later we will be assuming  or since we will be dealing with the positive values of t ,so we will 

not consider the initial  conditions, later we will be explaining how it is coming up. So note that  

the integral term on the right hand side  is zero if 𝑓(𝑡) = 0  for 𝑡 < 0.  So if you have another 



example, infinite, which is very important for sixth number,  initial value theorem, I will find the 

Laplace transform of the initial value theorem in the time  domain. 

If ℒ𝑓(𝑡) = 𝐹(𝑆) and 
𝑑𝑓

𝑑𝑡
  is  transformable and  𝑙𝑖𝑚

𝑡→∞
𝑆𝐹(𝑆)   exists then we can write 𝑓(0+) =

𝑙𝑖𝑚
𝑆→∞

𝑆𝐹(𝑆).   This we'll be using very frequently while we're talking on control design  and steady 

state behavior of the system if the flight is going to equilibrium point and how we  can find whether 

the exactly going to equilibrium point or not or the desired values or not this  thing we'll be using 

for finding the steady state error in the system. And seven the final value  theorem,  if ℒ𝑓(𝑡) =

𝐹(𝑆)  and 
𝑑𝑓

𝑑𝑡
  is Laplace transformable  and 𝑙𝑖𝑚

𝑡→∞
𝑓(𝑡) = 𝑓(∞)   exists then we can write 𝑓(∞) =

𝑙𝑖𝑚
𝑆→0

𝑆𝐹(𝑆)  . So this we'll be using for the  steady state behavior of the system how we can find the 

error, suppose  this is my desired response that I want to fly my aircraft, now if the  system goes 

like this and if there are some errors at the steady state find this amount of error using this final 

value theorem.  
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So let's stop it here. We'll  be continuing from the next lecture. In the next lecture we'll be talking 

how we can find the  transfer function of our system and also why you have to assume the initial 

condition to be zero  in the transfer function and also we'll be coming up with the concept of pole 

zero in the  system, in the transfer function how you can come the come up with the poles and 

zeros of the system.  So thank you very much, we'll continue for the next lecture.   

 


