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  In this lecture, we'll be discussing the standard method of linearization around the reference point  

through that Taylor series expansion. And then we'll apply this concept for the pendulum system  

and how we can get two different models of linear state equations of the pendulum system.  Then 

the linear state equation, what we will be finding from this lecture, we can validate to the  previous 

lecture what are the findings we had, then we'll conclude the lecture.  Now, we'll be using the 

concept of linearization. How can we use this concept to convert the  nonlinear system into linear 

form? This is called the linearization technique.  So, let's consider a scalar function, first we'll 

assume a scalar function then we'll extend to the  vector function, a scalar function  𝑓(𝑧)  which is 

differentiable, so the function behaves  something like this, this is my 𝑓(𝑧)  function, this is z is 

the independent variable  and let's assume the function something like this. 
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 Now, it is found to be  equilibrium point on some reference point somewhere here, for example, 

this is my  some reference point or you can say that equilibrium point and around this point  will 

approximate this nonlinear function something like this which is basically first order  

approximation, we can say at 𝑧 = 𝑧̅ .  Now, for values  of z close to 𝑧̅  we can replace   𝑓(𝑧)  with 



its approximation  using the Taylor series, around 𝑧̅ we can write 𝑓(𝑧) ≡ 𝑓(𝑧̅) + (
𝑑𝑓

𝑑𝑧
)
𝑧=𝑧̅

(𝑧 − 𝑧̅)  

, so this is very standard  expression if you apply the Taylor series expansion function  𝑓(𝑧) . Here 

we are not  considering the higher order terms because the magnitude of those higher order terms  

are quite less compared to the first order term, so we are neglecting those terms.  So, this is very 

basically first order approximation around z. 
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 So, here basically the main concept of this technique is that how the system is going to evolve 

around this equilibrium point or some  reference point  𝑧̅. Now, this is basically a scalar case if 

you extend this concept to our  higher order functions, so if you consider a vector valued function 

like this 𝑓𝑛: 1𝑅𝑛𝑥 1𝑅𝑚 → 1𝑅𝑛  and if you also assume the expression 𝑧̇ = 𝑓(𝑧 , 𝑢 )  for example, 

so this is more complex cases where we are having some  disturbance or any external perturbations 

or some controls on the system, then we can write in  general form in this expression, where z is 

basically a vector valued function or z is  basically vector and u can be also vector. So, now in that 

case we can approximate  this function, let me write this equation number  one, we can approximate 

this equation number one, 𝑓(𝑧 , 𝑢 )  at point (𝑧 , 𝑢  ) . So, this is basically some equilibrium point 

is (𝑧 , 𝑢  ) , some fixed point we can say is in the previous case,  in the previous case we had only  

𝑓(𝑧)  , now we have 𝑓(𝑧 , 𝑢 ) , so there are two different states  and they can be two different 

equilibrium points. So, in this case we can  extend the above concept, we can approximate 

𝑓(𝑥 , 𝑢 ) ≡ 𝑓(𝑥̅, 𝑢̅) + [
𝑑𝑓

𝑑𝑧
]
𝑧=𝑧̅

(𝑧 − 𝑧̅) + [
𝑑𝑓

𝑑𝑢
]
𝑧−𝑧̅

(𝑢 − 𝑢̅)  . 

 So, this is also a first order approximation,  but this is for different multi variables where x and u 

have two different various state vectors.  So, we can write where 

[
𝜕𝑓

𝜕𝑧
] =

[
 
 
 
 
𝜕𝑓1
𝜕𝑧1

⋯
𝜕𝑓1
𝜕𝑧𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑧1

…
𝜕𝑓𝑛
𝜕𝑧𝑛]

 
 
 
 

𝑛𝑋𝑛

 

So, this is called the Jacobian  matrix. This is a very powerful part in this case because this matrix 

will be useful for how we will  be finding the eigenvalues or the roots of the system and how we 



can comment on the stability  of the system also. 

 This is a very simple method you can come up with the conclusion  on stability. I mean we'll be 

talking those things later in the subsequent lectures  and here 

[
𝜕𝑓

𝜕𝑢
] =

[
 
 
 
 
𝜕𝑓1
𝜕𝑢1

⋯
𝜕𝑓1
𝜕𝑢𝑚

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑢1

…
𝜕𝑓𝑛
𝜕𝑢𝑚]

 
 
 
 

𝑛𝑋𝑚

 

   The dimension of u vector is m here so that is we'll go till m partial derivative. So,  the dimension 

of these we can write n x n and  n x m. So, this is also a Jacobian matrix for the control part but 

this is called the state matrix ,control matrix but we'll be talking later how we'll connect these 

things to our systems. 

 

  So, this is how we'll be finding the Jacobian matrix for the system. Now, if you apply this  concept  

to the systems 𝑥̇ = 𝑓(𝑥 , 𝑢)  and 𝑦 = 𝑔(𝑥 , 𝑢) . So, this is same system, here instead of  z we are 

writing x here, so it is structured by same and if you apply this above concept the way  we have 

found the Jacobian matrices for a non-linear system, then the approximations at (𝑥 , 𝑢) = (𝑥 , 𝑢 )  

we can write 𝑓(𝑥 , 𝑢) ≡ 𝑓(𝑥̅, 𝑢̅) + [
𝑑𝑓

𝑑𝑥
]
𝑥=𝑥̅ 𝑢=𝑢 

+ [
𝑑𝑓

𝑑𝑢
]
𝑥=𝑥̅ 𝑢=𝑢

(𝑢 − 𝑢̅) . So, this is the first order 

approximation of the system and  also the output equation,in the previous case we have done for 

the state equations, also the similar procedure we can apply for this output equation and so here 

we'll apply the same concept for the  output equation as well so the output equation we can write  

𝑔(𝑥 , 𝑢) ≡ 𝑔(𝑥̅ , 𝑢̅)  + [
𝑑𝑔

𝑑𝑥
]
𝑥=𝑥̅ 𝑢=𝑢

(𝑥 − 𝑥̅) + [
𝑑𝑔

𝑑𝑢
]
𝑥=𝑥̅ 𝑢=𝑢

(𝑢 − 𝑢̅)    this is a very standard 

technique in Taylor series expansion, so in Taylor series  basically we find the series of a function 

about some reference point. This is our reference point and how we are going to find the linearized 

model about this reference  point so that is similar. So this is how we find the linearized model  of 

the output equation so here if you define  𝐴 = [
𝑑𝑓

𝑑𝑥
]
𝑥=𝑥̅ 𝑢=𝑢

 so this is basically, if you notice, a 

matrix , these are matrices. So we can write a matrix a in define and we can define 𝐵 = [
𝑑𝑓

𝑑𝑢
]
𝑥=𝑥̅ 𝑢=𝑢

  

and this is called in control system  state matrix and this is called the control matrix. Welcoming 

these things extensively in the  future lectures for the time being please remember this is we call 

the state matrix for the output equation and this is also the control matrix for the output equation. 

So here we define 𝐶 = [
𝑑𝑔

𝑑𝑥
]
𝑥=𝑥̅ 𝑢=𝑢

  and 𝐷 = [
𝑑𝑔

𝑑𝑢
]
𝑥=𝑥̅ 𝑢=𝑢

  So these are basically matrices for the 

output equation,  now we'll find the linear equations from the above concept.  From the above 

concept if you write in terms of matrices if you write from this system and we can write equation 

as 𝑥 ≡ 𝑓(𝑥̅, 𝑢̅) + 𝐴(𝑥 − 𝑥̅) + 𝐵(𝑢 − 𝑢̅)  and similarly for the output equation we can write  𝑦 ≡

𝑔 (𝑥̅, 𝑢̅) + 𝐶(𝑥 − 𝑥̅) + 𝐷(𝑢 − 𝑢̅)  This is basically  what we are getting from the Taylor series 



expansion. 

Now we'll come up with a more compact form. Let's define 𝜎 = 𝑥 − 𝑥̅  and 𝜈 = 𝑢 − 𝑢̅  and 𝜔 =

𝑦 − 𝑔(𝑥̅ , 𝑢̅ ) . So this is my actual values and these are the trim values 𝑥̅ 𝑢̅  and g is the function 

at the equilibrium point 𝑥̅ 𝑢̅  and from this we can come off  𝜎 = 𝑥 − 𝑥̅ since here we are assuming 

𝑥 is constant so we get x dot and  if you apply this concept for our system, we can write 

𝜎̇ = (𝑥 − 𝑥̇̅) = 𝑥̇ 

 𝜎̇ = 𝑓(𝑥̅ , 𝑢̅ ) + 𝐴𝜎 + 𝐵𝜐 and also you can write 𝑤 = 𝐶𝜎 + 𝐷𝑣 .This is quite easy you can connect 

and also it should be noted that  at the equilibrium point these values, this function yields to be 

zero or we can write  the approximation  is linear when 𝑓(𝑥̅ , 𝑢̅  ) = 0 , it's quite obvious because 

we are finding the equilibrium point  making the function 𝑓 = 0  .This is how we are finding the 

equilibrium  point and the solution we are getting from the function when 𝑓 = 0  if the  solution 

from this condition will satisfy this 𝑓 = 0  for those values will come up  this condition as well. 

So this is quite obvious and from this condition we can come out 𝜎̇ = 𝐴𝜎 + 𝐵𝑣  and 𝑊 = 𝐶𝜎 +

𝐷𝑣 . So this is called  linearization of a nonlinear system. 𝑥̇ = 𝑓(𝑥 , 𝑢)  and 𝑦 = 𝑔(𝑥 , 𝑢) This is 

quite an important part of how we can  come up with the linear form of the nonlinear system. We'll 

take an example  of the same system that you have considered in the previous lecture pendulum 

system and how we  can come up with this form of this structure linear model. 

So let's proceed, example  we have system 
𝑑2𝜃

𝑑𝑡2
+

𝑔

𝐿
𝑆𝑖𝑛 𝜃 = 0   and after changing the variables we 

had so for the solution , we have 𝑥1̇ = 𝑥2 = 𝑓1(𝑥1, 𝑥2)  and 𝑥2̇ = −
𝑔

𝐿
𝑆𝑖𝑛𝑥1 = 𝑓2(𝑥1, 𝑥2)  this is we 

have done before.I can write here 𝑥1  is obviously zero but we  can write this is one function and 

if we apply the principle linearization. We can come up with the linear form but if you notice 

carefully this system is represented only with the state vector not the control vector, so we do not 

need to go to this part. It's not required because there is no control part in the system, just we can 

come up with this  structure. 

So it means we no need to find the second part because  there is no control in the system so we can 

just come up with the first few terms in the linear  model. So now let's start, so here the equilibrium 

point already you have and the output equation 𝑦 = 𝑔(𝑥) = 𝑥1(𝑡) = 𝜃(𝑡) . So this is the angle we 

are  measuring as the pendulum rotates around the reference point and the jacobian matrix for  the 

system we can write, it's a copy and matrix for the system 

𝐴 =

[
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2]

 
 
 

 

 if you notice for this pendulum system we had  two equilibrium points,you have found for the 

system equilibrium point, already you have 𝑥̅  = (0 ,0) , (𝜋 , 0) so it means we are having two  



jacobian matrix with the respective equilibrium point and if you do the partial derivative  for 𝑓1  

and 𝑓2 with respect to 𝑥1 and 𝑥2 we get the values for the matrix. 

𝐴 = [
0 1

−
𝑔

𝐿
cos𝑥1 0] 

So you can easily find these terms from this 𝑓1  𝑓2  function. Now we'll find the jacobian matrix 

for the equilibrium point (0, 0) so let's find A 

𝐴 = [
0 1

−
𝑔

𝐿
cos𝑥1 0]

(0,0)

= [
0 1

−
𝑔

𝐿
0] 

 at equilibrium point (0,0) .So this is the jacobian  matrix for the equilibrium point (0,0). Now if 

you write in a state equation form 

𝑥̇ = [
𝑥̇1

𝑥̇2
] = [

0 1

−
𝑔

𝐿
0] [

𝑥1

𝑥2
] 

Now this is basically a linear time invariant system  also we can say linear system and as you 

discussed earlier that for LTI system the equilibrium point  is assumed to be 0 and if you consider 

here this system, here also we can assume the equilibrium point 0 ,so we can write instead of error 

equation in that variables we can write this expression ,it is basically that same expression you will 

be having. So now from this, we can obtain the state equation 𝑥1̇ = 𝑥2  and 𝑥2̇ = −
𝑔

𝐿
𝑥 . So this is 

basically the linear system for the pendulum  at equilibrium point 0 0. Now we'll look the Jacobian 

matrix for the different  equilibrium point (𝜋 ,0) , so the Jacobian matrix at equilibrium point (𝜋 ,0) 

we can  write 

𝐴 = [
0 1

−
𝑔

𝐿
cos𝑥1 0]

(𝜋,0)

= [
0 1
𝑔

𝐿
0] 

and the corresponding state equations for the pendulum system in linear regime you can write 

𝑥̇ = [
𝑥̇1

𝑥̇2
] = [

0 1
𝑔

𝐿
0] [

𝑥1

𝑥2
] 

and the corresponding  state equations if you separate the equations 𝑥1̇ = 𝑥2  and 𝑥2̇ = −
𝑔

𝐿
𝑥1, so 

this is also linear system of the pendulum  at equilibrium point (𝜋 ,0). Let's stop it here in this 

lecture. In the next lecture we'll be continuing how we can  define the stability based on these 

obtained state equations and also we'll connect the  control part how we can make the system 

controllable even the natural system is  unstable, if you notice here these systems, this equation is 

basically  natural dynamics which we are getting from the original system, if you look the 



pendulum  system we have not assumed any perturbation or control in the system so this  is the 

original dynamics, basically this equation we obtained from the original dynamics so this is natural 

linear system. So in the next lecture we'll be talking about how to make the  system stable using 

the control. Thank you very much, we'll continue from the next lecture.   

 


