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In this lecture, we will see how can we find the transfer function of a coupled system  and 

also how can we design that closed loop control system, we will discuss in detail.  So first 

let me discuss the problem.  So, we have considered the linearized pitch dynamics of an 

aircraft at a steady state  or steady level flight 

Δ�̇� = −0.313Δ𝛼 + 56.7𝑞 + 0.232Δ𝛿𝑒 

�̇� = −0.0139Δ𝛼 − 0.426𝑞 + 0.0203Δ𝛿𝑒 … … 𝐸𝑞(1) 

Δ�̇� = 56.7𝑞 

Where q is pitch rate, Δ𝛼 is deviation of angle of attack from stream angle of attack 𝛼0, 

Δ𝜃  is deviation of pitch angle from trim pitch angle 𝜃0 , Δ𝛿𝑒  is change in elevator 

deflection. The elevator servo dynamics is given by 

Δ𝛿�̇� = −10Δ𝛿𝑒 + 10𝑣 

Here v is the input voltage or control voltage to the elevator servo. And if you see the 

closed  loop block diagram for this particular system, 
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We have to design PID controller. We will go step by step how  we can design the PID  

controller. The output of the PID controller is generated  from a data stream which is 



going to the servo system here which is 
Δ𝛿𝑒(𝑠)

𝑣(𝑠)
 and which gives the elevated control to the 

plant which  is denoted by 
Δ𝜃(𝑠)

Δ𝛿𝑒(𝑠)
 and the output is Δ𝜃 and we are having  summing point 

here where we have desired value of Δ𝜃𝑟𝑒𝑓  which is assumed  to be zero for this 

particular problem. So this is the closed loop  block diagram for this particular problem 

and the first  question is find out the transfer functions 𝐺(𝑠) =
Δ𝜃(𝑠)

Δ𝛿𝑒(𝑠)
  which is basically 

the plant transfer function and also we have to find 𝐻(𝑠) =
Δ𝛿𝑒(𝑠)

𝑣(𝑠)
. 

Second question is  to sketch the root locus plot for the system with OLTF=G(s)H(s). So 

we will design the  PID control for this problem using the root locus and Ziegler-Nichols 

method.  Third question is to design a PID  controller for the above system using Ziegler-

Nichols method. So this  is the problem for us now we will go step by step how we can 

solve this problem. So here if  you notice we have to find the transfer function 
Δ𝜃(𝑠)

Δ𝛿𝑒(𝑠)
 . But 

if you  look at our dynamics model, this is coupled actually. So we have to use the brute 

force  method or the crammers rule, what we have discussed in the previous lecture we 

can apply  those method and we can find this transfer function. Here I am not writing the 

dynamics part again, I am directly  applying the Laplace transform of those equations. 

Applying Laplace transform to Eq. (1)  by  assuming zero initial conditions for each state 

variable and writing in matrix form  

[
𝑠 + 0.313 −56.7 0

0.0139 𝑠 + 0.426 0
0 −56.7 𝑠

] [

Δ𝛼(𝑠)
𝑞(𝑠)

Δ𝜃(𝑠)
] = [

0.232
0.0203

0
] Δ𝛿𝑒(𝑠) 

Δ𝜃(𝑠)

Δ𝛿𝑒(𝑠)
=

1.151𝑠 + 0.1774

𝑠3 + 0.739𝑠2 + 0.9215𝑠
 

So this is the plant transfer function. Now we have  to find the H(s), so let's take another 

equation which is the servo  system and if you apply the Laplace transform with zero 

initial condition  we can find 

𝐻(𝑠) =
Δ𝛿𝑒(𝑠)

𝑣(𝑠)
=

10

𝑠 + 10
 

 Now to the second part of question. 

𝑂𝐿𝑇𝐹 = 𝐺(𝑠)𝐻(𝑠)𝑘 

=
𝑘 10 (1.151𝑠 + 0.1774)

𝑠(𝑠 + 10)(𝑠2 + 0.739𝑠 + 0.921𝑠)
 



Zeros: 𝑧1 =
−0.1774

1.151
= −0.1541 

Poles: 𝑝1 = 0, 𝑝2 = −10, 𝑝3,4 = −0.3695 ± (0.886)𝑖 

Here, 𝑛 = 4, 𝑚 = 1, 𝑛 − 𝑚 = 3 

Angle of asymptotes: 60°, 180°, −60° … 

 Centroid: 
−10.5849

3
= −3.5283 

𝑝1, 𝑝2 and 𝑧1 lie on the real axis. As one angle of asymptote  is 180 degree so one branch 

will go from 𝑝2 = −10 to −∞ and another branch will go from 𝑝1 = 0  to 𝑧1 = −0.1541 

Now, angle of asymptote from 𝑝3:  

= 180° + ∠(𝑝3 − 𝑧1) − ∠(𝑝3 − 𝑝2) − ∠(𝑝3 − 𝑝1) = 75.76° 

As the root locus is symmetric w.r.t the real axis, angle of departure from 𝑝4 will be  

−75.76°  

Intersection with imaginary axis: 

𝑠(𝑠 + 10)(𝑠2 + 0.739𝑠 + 0.9215) + 10𝑘(1.151𝑠 + 0.1774) = 0 

For intersection with 𝑗𝜔 axis, 𝑠 = 𝑗𝜔, Solving , we get 𝜔 = 0 and  

𝜔 = ±√
9.215 + 11.5𝑘

10.74
 

Here we can find  𝜔 = 0 and 𝑘 = 0 is satisfied or you can say is a solution. Again we 

can write 

8.311 ± √8.3112 − 4 ∗ 1.774 ∗ 𝑘

2
=

9.215 + 11.51𝑘

10.74
 

We find 𝑘 = 5.6031  and 𝑘 = −0.9937 . As 𝑘 > 0,  we have 𝑘 = 5.6031 . Also 𝜔 =

±2.6197. So the root locus intersects imaginary axis at ±2.6197𝑖. Hence the ultimate 

value is 𝑘𝑢 = 5.6031  and 𝜔 = 2.6197 . This k value we can find from the another 

approach what we have done in  the first half of the course which is basically the Routh-

Herwitz criteria,  through that Routh table we can also find this ultimate k. From the  

characteristic equation we can find the Routh table and we can find the value  and now if 

we are having this frequency we can also find the time period 

𝑇𝑢 =
2𝜋

𝜔
= 2.39 



So using  these two parameters we can find the PID gains using the Ziegler-Nichlos as 

following 

𝑘𝑝 = 0.6𝑘𝑢 = 3.3619 

𝑘𝑖 =
0.6𝑘𝑢

0.5𝑇𝑢
= 2.8034 

𝑘𝑑 = (0.6𝑘𝑢)(0.125𝑇𝑢) = 1.0079 

So these are the gains for the PID controls, now you can structure the PID controller as 

3.3619 +
2.8034

𝑠
+ 1.0079𝑠 

 This is the PID control structure which can be appropriate in our  control block diagram 

and from this we can come up with a system  which is going to be stable because this is 

the gain we found through the  Ziegler-Nichols rule. So let's stop it here, we have another 

lecture in this course  where I will give the brief of the course, how it was conducted, 

what were the  contents and I will give brief conclusion of this course. Then  we'll wind 

up this course. Thank you. 


