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Linearization of Longitudinal Aircraft Dynamics 

In this lecture, we will be starting how we can find the linearized equation of motion  of 

the aircraft. Before we proceed, let me rewrite the trim flight condition of the longitudinal 

equation  because it will be required while deriving the state space model. So, the trim 

flight  condition for the longitudinal motion, we had 

𝑋0 − 𝑚𝑔 sin 𝜃0 = 𝑚𝑢̇0 

𝑍0 + 𝑚𝑔 cos 𝜃0 = 𝑚𝑤̇0 … … 𝐸𝑞(1) 

𝑚0 = 0 

Now, we will start to  find the what type equation of motion of the original equation, the 

force equation in the  longitudinal motion force along the x axis will start. 

Let us begin with considering  forces along in the x axis or x direction, we can write 

𝑋 − 𝑚𝑔 sin 𝜃 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣) … … 𝐸𝑞(2) 

We know from previous lecture 

𝑢 = 𝑢0 + Δ𝑢, 𝑣 = 𝑣0 + Δ𝑣, 𝑤 = 𝑤0 + Δ𝑤 

𝑝 = 𝑝0 + Δ𝑝, 𝑞 = 𝑞0 + Δ𝑞, 𝑟 = 𝑟0 + Δ𝑟 

𝑋 = 𝑋0 + Δ𝑋, 𝑌 = 𝑌0 + Δ𝑌, 𝑍 = 𝑍0 + Δ𝑍 

𝑚 = 𝑚0 + Δ𝑚, 𝑛 = 𝑛0 + Δ𝑛, 𝑙 = 𝑙0 + Δ𝑙 

𝜃 = 𝜃0 + Δ𝜃, 𝜙 = 𝜙0 + Δ𝜙, 𝜓 = 𝜓0 + Δ𝜓 

So, this is basically the first term indicates the reference model and the  second term 

perturbed variable. And if you substitute these terms in the Eq.(2),  we get  



𝑋0 + Δ𝑋 − 𝑚𝑔 sin(𝜃0 + Δ𝜃)

= 𝑚 [
𝑑

𝑑𝑡
(𝑢0 + Δ𝑢) + (𝑞0 + Δ𝑞) + (𝑤0 + Δ𝑤)

− (𝑟0 + Δ𝑟)(𝑣0 + Δ𝑣)] … … 𝐸𝑞(3) 

And if you ignore  the product of perturbed variables and if you assume the trim flight 

condition, okay,  let me write during trim flight we know that  

𝑣0 = 𝑝0 = 𝑞0 = 𝑟0 = 𝜙0 = 𝜓0 = 0 

So, we are neglecting the product of perturbed variables because the magnitude of these  

terms are very small. So, after introducing this condition  in Eq.(3) and solving, we can 

write 

𝑋0 + Δ𝑋 − 𝑚𝑔 sin 𝜃0 cos Δ𝜃 − 𝑚𝑔 cos 𝜃0 sin Δ𝜃 = 𝑚𝑢̇0 + 𝑚Δ𝑢 + 𝑚Δ𝑞𝑤0 … … 𝐸𝑞(4) 

 Further, if we assume perturbations are small 

cos Δ𝜃 ≈ 1, sin Δ𝜃 ≈ 1 

𝑋0 + Δ𝑋 − 𝑚𝑔 sin 𝜃0 − 𝑚𝑔Δ𝜃 cos 𝜃0 = 𝑚𝑢̇0 + 𝑚Δ𝑢 + 𝑚Δ𝑞𝑤0 … … 𝐸𝑞(5) 

Using Eq.(1), Eq.(5) can be written as 

Δ𝑋 − 𝑚𝑔Δ𝜃 cos 𝜃0 = 𝑚Δ𝑢̇ + 𝑚Δ𝑞𝑤0 … … 𝐸𝑞(6) 

Okay we'll proceed with another assumption. If we align the body x axis along the  

direction of airplanes velocity vector in that case we can write 𝑤0 = 0 (stability axis) 

Δ𝑋 − 𝑚𝑔Δ𝜃 cos 𝜃0 = 𝑚Δ𝑢̇ … … 𝐸𝑞(7) 

Here the force Δ𝑋 is the change  in aerodynamic and propulsive force. Because already 

we have discussed 𝑋 actually is the total force which is coming from the aerodynamic 

and propulsive forces  and Δ𝑋 is the change in the aerodynamic propulsive force in the 

body x axis or x direction we can write and this Δ𝑋 can be written in Taylor series  form 

in terms of perturbation variables. So, let us write 

Δ𝑋 = 𝑓(Δ𝑢, Δ𝑤, Δ𝑞, Δ𝛿𝑒 , Δ𝛿𝑡) 

=
𝜕𝑋

𝜕𝑢
Δ𝑢 +

𝜕𝑋

𝜕𝑤
Δ𝑤 +

𝜕𝑋

𝜕𝑞
Δ𝑞 +

𝜕𝑋

𝜕𝛿𝑒
Δ𝛿𝑒 +

𝜕𝑋

𝜕𝛿𝑡
Δ𝛿𝑡 … … 𝐸𝑞(8) 

Where Δ𝛿𝑒  and Δ𝛿𝑡  are the perturbation variables in elevator input and fraction of 

maximum thrust. These are basically elevator deflection. So, this causes to deflect the 

body from the reference point to different  point and if it is going to control the Δ𝑋 then 

we can say this is the  favorable control input to the system which is going to control Δ𝑋 



or which can control  indirectly actually we are controlling Δ𝑢̇. So, how we can make 

time rate change of Δ𝑢 to zero with the application of control input and perturbation 

under the  maximum thrust. So, we'll be looking while designing the control algorithm. 

Let me write 

𝜕𝑋

𝜕𝑢
,
𝜕𝑋

𝜕𝑤
,
𝜕𝑋

𝜕𝑞
,

𝜕𝑋

𝜕𝛿𝑒
,

𝜕𝑋

𝜕𝛿𝑡
 

represent the stability derivatives.  This can be found from the wind tunnel testing 

basically which are evaluated  at the steady state  value. Basically these are the matrices 

if you look and generally if you remember while studying  of the state space 

representation we considered the Taylor series expansion of the system of the  pendulum 

system the value of this expression at the equilibrium point or the trim values  this is what 

you have done for the pendulum system. Now the aerodynamic  forces and moments  can 

be expressed  as a function of all motion variables.  However, generally we're gonna use 

almost all variables are involved to generate this  force and moments but we will be using 

which contributed most so we can write however  in these equations only the terms  that 

are  usually  significant  have been considered or have been retained. Another 

assumption, is the effect of, piece rate q on the X  which is basically 𝑋0 + Δ𝑋  x is 

negligible, because they are in the same direction, we can say that. I mean, we are  

assuming the rate along the y axis to be zero, we are assuming, and that's why the effect  

of the force along x direction will be negligible. 

And therefore, Eq.(7) reduces to 

𝜕𝑋

𝜕𝑢
Δ𝑢 +

𝜕𝑋

𝜕𝑤
Δ𝑤 +

𝜕𝑋

𝜕𝛿𝑒
Δ𝛿𝑒 +

𝜕𝑋

𝜕𝛿𝑡
Δ𝛿𝑡 − 𝑚𝑔Δ𝜃 cos 𝜃0 = 𝑚Δ𝑢̇ 

(
𝑑

𝑑𝑡
−

1

𝑚

𝜕𝑋

𝜕𝑢
) Δ𝑢 −

1

𝑚

𝜕𝑋

𝜕𝑤
Δ𝑤 + 𝑔Δ𝜃 cos 𝜃0 =

1

𝑚

𝜕𝑋

𝜕𝛿𝑒
Δ𝛿𝑒 +

1

𝑚

𝜕𝑋

𝜕𝛿𝑡
Δ𝛿𝑡 

And if you denote 𝑋𝑢 =
1

𝑚

𝜕𝑋

𝜕𝑢
, 𝑋𝑤 =

1

𝑚

𝜕𝑋

𝜕𝑤
   and so on are the aerodynamic derivatives 

divided by the airplanes mass  

(
𝑑

𝑑𝑡
− 𝑋𝑢) Δ𝑢 − 𝑋𝑤Δ𝑤 + 𝑔Δ𝜃 cos 𝜃0 = 𝑋𝛿𝑒Δ𝛿𝑒 + 𝑋𝛿𝑡Δ𝛿𝑡 … … 𝐸𝑞(10) 

So, this is basically the linear model of the system because these terms are constant, they 

are perturbed  variable. Eq.(10) is actually the linear equation of the forced equation in 

the X direction. The stability derivatives we find from the wind tunnel testing.  So, now 

we will be moving to the next part of the forced equation along z axis and how we can 

find the linear form of the force along z axis. So, that part we will continue from the next 

lecture. Thank you. 


