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Hello, everyone. This is lecture number 19. In this lecture, we'll be discussing on some  

example of control system, how we can design a control system for our aircraft attitude  

system, and also we'll be looking how the system changes with the location of the poles  

in this plane. Before we continue, I'd like to refer some specifications of what you have  

done in the earlier lecture. So the specifications we derived from the second-order system 

are 

𝑡𝑟 =
𝜋 − 𝛽

𝜔𝑑
 

𝛽 = tan−1 (
√1 − 𝜉2

𝜉
) 

𝑡𝑠 ≈
4.4

𝜉𝜔𝑛
 

𝑡𝑝 =
𝜋

𝜔𝑑
 

𝑀𝑝 = 𝑒
−

𝜋𝜉

√1−𝜉2
∗ 100% 
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So, these are the specifications we  obtained from the analysis what you have done in the 

last lecture, and if you want to design a  control system, we're going to use this 

specification, how we can use the control and how we can  modify this specification, and 

accordingly we can come up with the closed-loop control system,  because these 

specifications are being derived from the standard closed-loop second-order system.  But 

sometimes some difficulty arises while designing the control system, so there are simple  

ways we can come up with the relation between the maximum overshoot and damping 

ratio. 

 

So, this plot indicates the relation between the damping ratio  and maximum overshoot,  

and this relation basically for the underdamped system, because if you see the x-axis, we 

are  having the damping ratio 𝜉, and the y-axis indicates the maximum overshoot, and 

damping ratio  varies from 0.1 to 0.1, and maximum overshoot varies from 10 percent to 

100 percent.  Now, if you are given, suppose, maximum overshoot in the control system, 

we would like to have  maximum overshoot, for example, 50 percent. So, at 50 percent, 

we can come up with the relation that  roughly you can say the damping ratio will be 0.2. 

So, if one of the parameters is given to us, we can  get the other parameter. So, sometimes 

it is very easy to come up with the conclusion of the control  system instead of going 

through the mathematical derivations. Now, look at an example how we can  design a 

control system practically.  

Example: Design a PD controller  for aircraft attitude/orientation control. Assume  the 

inertia is 𝐼 = 1 𝐾𝑔 − 𝑚2. Now design the control system (closed loop control system)  

which satisfy  the following  time domain  specifications: 

1. Rise time constraint: 𝑡𝑟 ≤ 30𝑠𝑒𝑐 

2. Maximum overshoot constraint: 𝑀𝑝 ≤ 30% 



3. Settling time constraint: : 𝑡𝑠 ≤ 100𝑠𝑒𝑐 

So, these are the specifications given to us  and we should design an autopilot which will 

satisfy these objectives. If you are going to  use this formula, we can get the value of 𝜉 

and 𝜔𝑛.  But sometimes it is a tedious process to solve this expression. So, we'll use this 

figure one, and based on it, we can get some idea on the damping ratio because we are 

given the  maximum overshoot in the problem and which should be less than 30 percent. 

 

So, at 30 percent, we can get some idea of damping ratio. So, let's work on the  problem. 

From the relation in figure one, we can get for 30 percent overshoot,  the damping ratio  

yields to be 0.4.  Now, we are having damping ratio 0.4 and we can find the natural 

frequency  if you use the relation for settling time. So, we know the settling time, the  

relation between 𝑡𝑠 and damping ratio and natural frequency, we can write  

𝑡𝑠 ≈
4.4

𝜉𝜔𝑛
 

𝜔𝑛 = 0.11 𝑟𝑎𝑑/𝑠 

And now, we can go with the PD gains,  since we are asked to design PD controller here. 

So, as you know,  the relation between the damping ratio and natural frequency and PD 

controller gains, 

𝑘𝑝 = 𝜔𝑛
2𝐼 = 0.0121 

 

So, for these conditions, we are getting the proportional gain as  0.0121. Now, we will 

find the derivative gain, the relation between the damping ratio and natural  frequency as 

you have done for analysis.  

𝑘𝑑 = 2𝜉𝜔𝑛𝐼 = 0.08 

So, now we are having the controller gains  which satisfied the above specifications. 

Now, the controller  for the above system, we can write 

𝑢(𝑡) = 𝑘𝑝𝑒 − 𝑘𝑑�̇�(𝑡) 

= 0.0121𝑒(𝑡) − 0.088�̇�(𝑡) 

If we take Laplace transform, 

𝑈(𝑠) = 0.0121𝐸(𝑠) − 0.088𝑠𝑌(𝑠) 



And if you draw the closed loop attitude control system of the aircraft, we are giving the 

step command, which is R(s)=1/s,  basically r(t)=1. So, here we have 𝑘𝑝 , which is 

nothing but 𝐺𝑐(𝑠), and we are having a summing point here and this is our plant,  plant is 
1

𝐼𝑠2. This is our current attitude or y(t), or we can say Y(s) in Laplace  transform. 
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And in the inner loop, we are having, in the feedback, we are having 𝑘𝑑𝑠, basically 𝑘𝑑𝑠  

is negative 0.088 s, and our 𝑘𝑝   gain is 0.0121, and this is E(s),  and this is the outer loop 

of the control system,  negative. So, if you look this expression, it is quite well validated 

in this block diagram. So, 0.121 into E(s), this is basically our U(s), we can write,  this is 

another controller, may be 𝐸1(𝑠), which is the sum value of the two different  inputs. So, 

this is how we can design the closed loop control system.  Now, let's extend this concept 

for any other system, any other dynamical system, because here  we know the attitude 

dynamics, and also from the attitude dynamics, how we can come up with the  closed 

loop control system, and how we can maintain the desired attitude, this is we have  

discussed so far, and based on the standard system, standard second-order system, how 

we can come up  with the control gains, which can help us to fulfill our mission 

objective. Now, let's extend  this concept for any other dynamical system. Suppose, 

sometimes what happens, sometimes system  linear model is given and you are asked to 

design the control system. 

So, to tackle this kind of  problem, how we will handle, let's discuss on this. Suppose, we 

are given system 

�̈�(𝑡) + 𝑦(𝑡) = 𝑢(𝑡) 

You are asked to design U(t) such a way that  this will help you to track y(t) to our 

desired step command,  which is r(t)=1. So, this kind of problem we can easily tackle if 

you have full  understanding on standard second-order system. So, standard second-order 

system we know 



𝑌(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2
 

Suppose, you are given some ideal response,  ideal response means you are given some 

the values of 𝑡𝑝, 𝑡𝑟 , 𝑡𝑠, 𝑀𝑝,  for example. So, based on these given parameters, your ideal 

step response, you can come up.  Suppose, this is my ideal step response, something like 

this,  
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And from this given  specification also you can come up with the damping ratio and 

natural frequency.  So, based on these values, you can come up with this transfer 

function,  what should be the transfer function? This is the ideal case, you can come up 

with  the values. We'll look just for a moment how you can come up. 

So, now this is, you are asked to  design the control here. So, here in this example I'm 

taking for the motivation if you want to design  control system for any other dynamic 

systems. How will you tackle? I'll proceed. So, now from this  given system, this is my 

plant  

�̈�(𝑡) + 𝑦(𝑡) = 𝑢(𝑡) 

And from this plant we can come up with the  plant transfer function. If you take the 

Laplace transform of this equation, we get 

𝑌(𝑠)

𝑈(𝑠)
=

1

𝑠2 + 1
→ 𝐺𝑝(𝑠) 



And you are asked to design PD control.  So, this is basically my 𝐺𝑝(𝑠) plant transfer 

function, which is fixed, which you can't change.  The plant transfer function is difficult 

to modify, because this is coming naturally. And you are asked to design PD controller 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑑�̇� 

And from this, if you apply the Laplace transform for this equation,  you can get 

𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 + 𝑘𝑑𝑠 

And if you want to come up with the closed loop transfer function for this particular 

plant,  
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And from this closed loop control system,  we can find the transfer function. If you notice 

carefully, here 𝑘𝑝 and 𝑘𝑑 are unknown.  So we need to find them, this actually we are 

doing the same procedure what you have done in the  previous example. 

So the closed loop transfer function, we can write 

𝑌(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
 

=
𝑘𝑝 + 𝑘𝑑𝑠

𝑠2 + 𝑘𝑑𝑠 + (1 + 𝑘𝑝)
 

So this is our actual system, actual closed loop control system where the unknowns are 

𝑘𝑝 and 𝑘𝑑.  Now let's go back to here. So this is the standard second order system. Please 

don't forget this is very very important. Basically the peak time, rise time, settling time, 

maximum overshoot are defined on the standard second order system. 

 

And for this given values,  some numerical values, let's say this is the response we are 

getting. And for this given  specification we can come up with 𝜉 and 𝜔𝑛. Let's say 𝜉 is 

0.5 and 𝜔𝑛 also 0.5.  First let's say, so from these values we can come up with 



𝑌(𝑠)

𝑅(𝑠)
=

0.25

𝑠2 + 0.5𝑠 + 0.25
 

So this is the second order system, some ideal response we'll have and this is the response 

we are having here.  This is the response and our system should follow this response 

because this is our step response. So this system also should follow Y(s)/R(s), should 

follow this response. So what we'll do is we'll compare both the above equations,   

𝑘𝑑 = 0.5 

1 + 𝑘𝑝 = 0.25 

So this is how we can find the value of 𝑘𝑝 and 𝑘𝑑 which will help us to come up with the 

relation  with the control system for this particular plant. And if you consider this 𝑘𝑝, 

𝑘𝑑 in this controller  you can get a desired response which will track this step function. 

So this is how we can design  a control algorithm for any arbitrary systems and this is the 

procedure we follow. So we should have  some standard system where you know all the 

system specifications and you can compare both the  system and you can come up with 

the control parameters. 

So this is one way we can design the  controller. In this course we'll be talking different 

approaches how we can design the controller,  this is one of them. So let's stop it here, 

we'll continue from the next lecture with the new  topic there we'll be talking on how the 

system behavior will differ or change  with the addition of poles and zeros to the system. 

Thank you. 


