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Transient Response Specifications 

In this lecture, we'll be studying the transient response of PD-controlled system. In this  

direction, we'll be finding the expression of rise time, settling time, peak time, and  

maximum overshoot. And these parameters can be used to modify the transient response 

of  the system. If you'd like to reach the desired values very fast with less magnitude in 

overshoot  and undershoot, how you can use this parameter to modify the response? Then 

we'll conclude  the lecture. In the last lecture, we discussed about the specification and 

how can we define  this specification in the response plot. In this lecture, we'll be finding 

the expression  of this specification in time domain. We'll start with finding the rise time. 

As for the  definition, the rise time is the time taken to first reach the final value.  
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So from the  step response, let me define this the figure 1, from the step response  in 

figure 1,  we see that at 𝑡 = 𝑡𝑟, the output  is y(t) equal to 1. Hence, if you remember the 

equation we had,  



𝑦(𝑡) = 1 − 𝑒−𝜉𝜔𝑛𝑡 [cos 𝜔𝑑𝑡 +
𝜉𝜔𝑛

𝜔𝑑
sin 𝜔𝑑𝑡] … … 𝐸𝑞(1) 

 

So this is the expression we found and if you  substitute y(t) equal to 1, let me write the 

equation number 1, in equation number 1 we can  write 

cos 𝜔𝑑𝑡𝑟 +
𝜉𝜔𝑛

𝜔𝑑
sin 𝜔𝑑𝑡𝑟 = 0 

After rearranging,  we can write 

tan 𝜔𝑑𝑡𝑟 =
𝜔𝑛√1 − 𝜉2

−𝜔𝑛𝜉
 

For the  underdamped systems, as we have discussed before, for the underdamped 

system, the pole locations  are as following.  

𝑠1,2 = −𝜉𝜔𝑛 ± 𝑗𝜔𝑑 
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From this plot, we can write 

𝜔𝑑𝑡𝑟 = 𝜋 − 𝛽 

𝑡𝑟 =
𝜋 − 𝛽

𝜔𝑑
 

tan(𝜋 − 𝛽) = −
√1 − 𝜉2

𝜉
 



𝛽 = tan−1 (
√1 − 𝜉2

𝜉
) 

So this beta can be  used to find the 𝑡𝑟 expression because this is the 𝑡𝑟 expression. So 

here 𝜔𝑑 is known  and 𝛽 is unknown. So if you can find 𝛽 from this expression, we can 

find 𝑡𝑟. So if you notice  carefully here, this 𝛽 is a function of 𝜉 and this 𝜉 also depends 

on the control parameters  what you are defining. We have defined some expression with 

𝜉, some expression 𝑘𝑝, 𝑘𝑑  and 𝜔𝑛. So using these control variables,  we can modify the 𝜉 

and if we can modify 𝜉 also 𝛽 be modified and based on 𝛽,  we can modify 𝑡𝑟. So this is 

how we can improve the rise time.  So now let's go to our second specification, peak 

time.  In peak time, the definition was the peak time occurs at the first time when 
𝑑𝑦

𝑑𝑡
= 0. 

So of course this is from the plot at  𝑡𝑝 here the value is constant. 

So we can write at t equal to 𝑡𝑝 we can write 
𝑑𝑦

𝑑𝑡
= 0. So for this we will take the time  

derivative of the equation number one. 

𝑑𝑦

𝑑𝑡
= 𝑒−𝜉𝜔𝑛𝑡 sin 𝜔𝑑𝑡 [

𝜉2𝜔𝑛
2

𝜔𝑑
+ 𝜔𝑑] … … 𝐸𝑞(2) 

So we can write  the peak time 𝑡 = 𝑡𝑝  we must have sin 𝜔𝑑𝑡𝑝 = 0 . Hence 𝜔𝑑𝑡𝑝 =

0, 𝜋, 2𝜋, … 

From this clearly  the first peak correspond to 𝜔𝑑𝑡𝑝 = 𝜋 

𝑡𝑝 =
𝜋

𝜔𝑑
 

So this is the expression for  peak time  so here again you can see that 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2 

So here 𝜔𝑛 and 𝜉 depends on control parameters. 

So we can modify the 𝜔𝑑  and also you can modify the peak time now let's go find the 

maximum overshoot. The next specification maximum overshoot  which is denoted by 

𝑀𝑝 ,the maximum overshoot occurs at the peak time 𝑡 = 𝑡𝑝 that is obvious  it is already 

we have done the maximum overshoot occurs 𝑡 = 𝑡𝑝 so based on this definition  we can 

say that the maximum  overshoot occurs at the peak time 𝑡 = 𝑡𝑝 with the maximum  

response. 

𝑦𝑝 = 1 − 𝑒−𝜉𝜔𝑛𝑡𝑝 [cos 𝜔𝑑𝑡𝑝 +
𝜉𝜔𝑛

𝜔𝑑
sin 𝜔𝑑𝑡𝑝] 

We know that  𝜔𝑑𝑡𝑝 = 𝜋 such that cos 𝜔𝑑𝑡𝑝 = −1 and sin 𝜔𝑑𝑡𝑝 = 0 



Therefore  the maximum response   

𝑦𝑝 = 1 + 𝑒
−

𝜋𝜉

√1−𝜉2
 

The maximum  percentage  overshoot of the final  value  is  

𝑀𝑝 = 𝑒
−

𝜋𝜉

√1−𝜉2
∗ 100% 

So this is how we define the maximum overshoot of the response similarly the previous 

specification here also we can modify  the maximum overshoot using 𝜉and 𝜉 is also 

dependent control parameters this is how we do the modification. Now we'll go to our 

last specification settling time 𝑡𝑠.  As you know that it is basically the difference between 

the  current and final value and we had response something maybe something like this 
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So now the settling time we can write here the difference between  the difference 

between  current and final value of y(t) so we can 

𝑦(𝑡) − 1 = −
𝑒−𝜉𝜔𝑛𝑡

√1 − 𝜉2
[cos 𝜔𝑑𝑡 sin 𝛽 + cos 𝛽 sin 𝜔𝑑𝑡] … … 𝐸𝑞(2) 

∵ tan 𝛽 =
√1 − 𝜉2

𝜉
 

cos 𝛽 = 𝜉, sin 𝛽 = √1 − 𝜉2 

Since we know that  the magnitude of |sin 𝜔𝑑𝑡 + 𝛽| ≤ 1 If you use this condition in 

equation number two we can  write 

|𝑦(𝑡) − 1| ≤
𝑒−𝜉𝜔𝑛𝑡

√1 − 𝜉2
 

 The percentage deviation  from the final value  we can write  



|𝑦(𝑡) − 1|

1
∗ 100% ≤ 2% 

So the two percent we have assumed  while we are defining the response all this stuff so 

two percent we can tolerate in  the response suppose this is the difference between two 

percent between the current and final value so we can write this expression or you can 

write but in some books they are having different values so if it is different we can 

calculate accordingly for 𝑡𝑠  

𝑡𝑠 =
𝑙𝑛(0.02√1 − 𝜉2)

−𝜉𝜔𝑛
… … 𝐸𝑞(3) 

So this is the  expression for settling time so if you notice here again the settling time also 

depend on the  natural frequency and damping ratio so using the control we can modify 

the settling time how fast  if we want to reach if your aircraft needs to be reached to the 

final value very quickly  then by using the control we can modify the settling time but 

this is how we do the  I mean analyze the system using the controls let me write one note 

here this maybe we will be  using in some places 

Note: for damping ratio  between 0.1 and 0.9, the quantity −𝑙𝑛(0.02√1 − 𝜉2) varies 

between 3.9  and 4.8.We may  approximate  the expression  for 𝑡𝑠 by   

𝑡𝑠 ≈
4.4

𝜉𝜔𝑛
 

So sometime we use this value for the underdamped system and yeah this is also the 

designing control we use this expression also so let's stop it here  we will continue from 

the next lecture. I will have some examples how we can design a controller for aircraft 

attitude systems. Thank you. 


