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In this lecture, we will be discussing the PID control, proportional integral and derivative  control. 

In the last lecture, we discussed proportional and derivative control,  and we have assumed that 

the disturbance torque or moment to be zero. So, in the PID control system,  we assumed the 

disturbing  moment  or torque to be zero. But in practical problems, in real life problems, we 

generally can't ignore  the disturbance. There is always disturbance. Suppose the aircraft is flying, 

there can be wind  disturbance, for example. 

So, let's assume there is some disturbing torque acting in the system, 𝑀𝑑   in the system along with  

PD control. So, we will take you to the motivation why you have to consider integral control. So, 

here we'll be going with PD control with disturbance. 

Let's see how it is happening.  So, the system we had for PD control, 𝐼𝑦̈ = 𝐾𝑝(𝑟 −  𝑦) − 𝐾𝑑𝑦̇ +

𝑀𝑑  . So, this we already had, we derived it. And now we are adding something about the response. 

Suppose we have some system and the system should follow this line. 

 

Let's assume this is my reference line 𝑟(𝑡) .  In PD control, what you have observed is that the 

system can start with oscillation  and with time the oscillation will decay into the reference signal.  

But at steady state, there can be some errors. Steady state means  if you have any kind of response 

and if this is suppose 𝑟(𝑡) , that is your signal or the  reference signal to be tracked, if my system 

is going like this,  the system goes to some constant value after some time and the system stays 

there.  For all future time, the system stays to that value. 

 

So, from these two goes to the origin to this time, it goes to the steady state, it is called transient 

behavior of the system.  And once it reaches the steady state value, it is called steady state behavior,  

steady state response.   
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So, even after the oscillations die out in the PD control system,  there will be steady state error in 

the attitude.  So, this is the problem that happens in the PD control system if there is a disturbance.  

 

Now, how to tackle these issues? Let's work on it.  Let's assume similar to before, the reference 

attitude 𝑟(𝑡) is constant.  So, in this situation, if it is constant 𝑟(𝑡) at steady state,  as I said, it stays 

to some values. So, 𝑟 − 𝑦 = 𝑒 . So, error will be there forever  after the system reaches steady state 

behavior. 

 

So, it means r is constant here.  And if e is constant here, after steady state, so y should be also 

constant,  which cannot be varied. So, at steady state, we can say 𝑦̇ = 𝑦̈ = 0 . That is quite obvious 

at steady state,  because y should be constant at the time. Let me write this equation number one. 

 

We can rewrite at this condition  𝐾𝑝(𝑟 − 𝑦) + 𝑇𝑑 = 0  or we can write 𝐾𝑝𝑒 + 𝑇𝑑 = 0  or we can 

write 𝑒 = −
𝑇𝑑

𝐾𝑝
 . So, this problem arises  if you have a disturbance in the system in the PD control 

system. So, which is basically, non-zero.  And if you plot graphically, if you see the response, how 

it grows with time,it will have something  like this. 

This is my t and this is 𝑒(𝑡) . So, if you see the magnitude −
𝑇𝑑

𝐾𝑝
 ,  it is constant and we can say this 

is the error area basically.  And this area we can write 𝐴 = ∫ 𝑒𝑑𝜏
𝑡

0
 . And let me define this as figure 

one.  So, this will happen at steady state, this is the condition that will arise. 

 



(Refer Slide Time 9:25) 

 

Why integral term should come into picture. So, PD control, proportional derivative control,  does 

not have  a memory.  And to provide the controller with capability of  driving the error to zero in 

the presence of constant disturbance, we need to add a integral term in the control law. So, let me 

write, in the presence of  external disturbance  in the aircraft attitude motionless equation, an 

integral term is added  to the controller. 

So, we have to add an integral term like 𝐾𝑖  ∫ 𝑒(𝜏) 𝑑𝜏  
𝑡

0
 where 𝐾𝑖 ≻ 0  and this is basically what 

we call integral constant.  So, hence the PID control, so because of this our integral term is coming 

into the PD control system.  Hence, the PID control law is given by  𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑𝑒(𝑡) +

𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 
𝑡

0
.  And the controller transfer function, we can write, if we take the Laplace transform, 

we will have 𝑈(𝑆) = 𝐾𝑝𝐸(𝑆) + 𝐾𝑑𝑆 𝐸(𝑆) +
𝐾𝑖

𝑆
𝐸(𝑆)  And from here, we can write 

𝑈(𝑆)

𝐸(𝑆)
= 𝐾𝑝 + 𝑆 𝐾𝑑 +

𝐾𝑖

𝑆
= 𝐺𝑐𝑆  

And if you see the  closed loop control structure, we have a reference signal 𝑟(𝑠) , we have error 

𝐸(𝑆) from this summing  point, we have a controller here, 𝐾𝑝 + 𝑆𝐾𝑑 +
𝐾𝑖

𝑆
 . And the output from 

this  block, we can write 𝑈(𝑆). And if also you are having the disturbance, the system, 𝑀𝑑(𝑆). 

 

And we can write our attitude motion equation 
1

𝐼𝑆2
 . This is my 𝐺𝑝(𝑆) equal to 𝑌(𝑆).  This is the 

EOD feedback system. In this summing point, this is the closed loop control system  with PID 

control. 
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Now, let me write a note here, how this integral term is going to dissipate this term. It's a very 

important note. The integral term has memory that is proportional to the area under  the error curve.  

A, this is my error curve area . So now, if the error  is non-zero, the integral term  keeps on 

increasing  to a larger value to provide  the correcting torque  to the system, until the disturbance 

torque  has been compensated. 

And the attitude error  of the aircraft system, which is (𝑟 − 𝑦)  is to zero.  Also, we can write here 

the integral term in the PID control  learns what the disturbance torque acting in the system  is. So, 

this is a very important note, why we need to consider the integral term in PID control. In this 

motivation, we'll be moving in the sports that control design and  these three types of control will 

be considering for designing the autopilot for the different systems or different equations of 

motions. Now, let's look at how we can modify the system response. 

 

As I mentioned, for any kind of response,  we can have two components, one is transient response 

and other is the steady state response.  So, suppose this is my 𝑦(𝑡)  and this is t- axis. So now, if 

our desired value somewhere is here,  and if the aircraft attitude response, for example, is 

something like this  and after some time it gets settled here. Now, the question is how we can  

reduce this steady state error, this overshoot or undershoot.  So, we'll define some kind of 

parameters which will help us to modify the entire response. 

 

So, here we can say before the system goes to steady state,  this is the part of the transient response  

and once it reaches the steady state, and after that time, we can say this is the  steady state response.  
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Now, we have to design the controller in such a way that we can improve  transient response as 

well as the steady state response. Now, how will we think about this?  How will we be designing 

the controller precisely so that our mission objective is  met? So, here the first and foremost part 

is, the controller must provide asymptotic stability. So, the objective is we need to design  the 

controller in such a way that  the controller  must provide  asymptotic  to the proposal of the system. 

 

If you refer to the equation or the transfer function which relates between the input and output,  

reference signal and actual output, we had 𝑌(𝑆) =
𝐺𝑝(𝑆) 𝐺𝑐(𝑆)

1+𝐺𝑝(𝑆) 𝐺𝑐(𝑆)
 𝑅(𝑆)  So, 𝑅(𝑆) is the reference 

signal and 𝑌(𝑆) is the actual output  from the system. So, the asymptotic stability means,, if you 

take the Laplace transform of this equation, 𝑦(𝑡) = ℒ−1 {
𝐺𝑝(𝑆) 𝐺𝑐(𝑆)

1+𝐺𝑝(𝑆) 𝐺𝑐(𝑆)
}   inverse Laplace transform 

of this equation. So, if you notice in this equation, the system has been transformed into a time 

domain from the frequency domain. Now, we need to come up with some kind of specification  

which will help the system to follow asymptotically stability. 

 

So, here asymptotically means,  this expression, let me write this equation number one, for 

example, must asymptotically  go to zero. So, this means the pole of the system must lie in the 

negative real  axis. So, I should say this means the poles of the characteristic equation 1 +

𝐺𝑝(𝑆) 𝐺𝑐(𝑆) = 0  must have negative real parts.  So, this pole should lie in this region, in the 

negative side.  It may have a complex conjugate part, but it should have a negative real part, that 

is very important. 

Now, we have to come up with some kind of specification which will help us to modify  our 

response. So, as I said, how I can reduce the statistic error  here, or how I can reduce the overshoot, 

undershoot. So, we need to come up with some kind of  specification which will help us to do this. 

And this is called the time domain specification.  

What does it mean? So, we are working till now on the Laplace transform, right? I mean,  the 

transfer functions we have arrived at in terms of Laplace domain. Now, we need to convert  from 

the Laplace domain to time domain by taking the inverse Laplace transform.  And in the time 



domain equation, we'll specify some terms which will help us to do our  job. And this part is very, 

very important, how to modify the transient response and  steady-state response of the system. And 

let's continue on this part from the next lecture. 

 


