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In this lecture, we'll be discussing the typical controls we use in the classical control synthesis.  

We'll start with proportional control and we'll see that the response of the aircraft system  with the 

proportional control will be oscillatory around the equilibrium point.  To avoid this problem, we'll 

take the help of derivative control, which will add basically  damping to the system and due to 

which the oscillation in the proportional control can be avoided.  Then we'll move to PID control 

where we'll be adding the integral part to the control.  Basically if there is a disturbance acting on 

the system and due to that disturbance, there is steady state error in the response and through the 

help of integral control the steady state error can be mitigated over time.  Then we'll conclude the 

lecture. 

 

 In this lecture, we'll be discussing what are the typical control algorithms we use in the classical 

control system domain.  Let's redraw the figure we had in the previous lecture, the closed loop 

diagram.  So we had our reference value.  This is we can write 𝑟(𝑡)  and we had a controller 𝐺𝑐(𝑆)  

and the output from the 𝐺𝑐(𝑆)  we had 𝑈(𝑆) .  We can write 𝑅(𝑆) , the reference signal.  And this 

control, before it goes to the system, we had also the disturbance 𝑀𝑑(𝑆)  and the summed  output 

was going to the plant,so 𝐺𝑝(𝑆) , this is output, 𝑌(𝑆) .  In the feedback, we had measurement noise, 

which is due to the sensor malfunction maybe. And this was measurement noise, 𝑊(𝑆)   And we 

had sensor transfer function 𝐻(𝑆)  and the sensor generally we use to determine  or detect the 

position or attitude of the aircraft.  So we assume H is the unity feedback system.  So 𝐻(𝑆) = 1.   
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And in this lecture, we'll be discussing how we can come up with different control algorithms  in 

the controller block so that our mission objective is fulfilled. 

So we'll be designing different controls in the controller and how we can fulfill our objective.  So 

let me write the heading, typical control laws, we use in classical  control techniques.  We'll restrict 

ourselves not to consider the measurement noise for the time being 

 𝜔(𝑆) = 0 .  In this assumption, the attitude motion of the aircraft, we can write 

𝐼�̈�(𝑡) = 𝑢(𝑡) + 𝑀𝑑(𝑡)  

So our motivation is how we can design a control algorithm in place of 𝑢(𝑡)  so that we can get  

the desired response 𝑦(𝑡).  Suppose our desired response is 𝑦𝑑(𝑡)  and how we can design control 

so that I can track 𝑦𝑑(𝑡) ← 𝑦(𝑡).  So 𝑟(𝑡) ← 𝑦(𝑡)  can be your reference signal or it's maybe 

𝜃𝑑(𝑡) ← 𝜃(𝑡) .  So this is 𝜃 actual.  So our objective is how we can make 𝜃(𝑡) to 𝜃𝑑(𝑡). So first, 

let's consider proportional control. 

In proportional control, basically, it is just the scaling of the error signal.   So it means here we 

have an error signal, 𝐸(𝑆), which is basically negative and positive.  And this is my controller.  

 

And in the controller, basically, we have to assume some kind of constant, which is  scale the error 

signal so that we can get 𝑈(𝑆).  So let me write the output of the control block, 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡).  

So 𝐾𝑝 is the scaling factor of the error signal where 𝐾𝑝 ≻ 0 is the proportional gain.  And the 

associated transfer function for the controller, we can  write 𝑈(𝑆) = 𝐾𝑝𝐸(𝑆)   So output by input 

equal to transfer function, Laplace transform output divided by Laplace  transform of input, 

basically, it also functions. 

So 
𝑈(𝑆)

𝐸(𝑆)
= 𝐾𝑝 = 𝐺𝑐(𝑆)  and this is the controller transfer function.  So now let's assume the 

reference signal which needs to be tracked,𝑦𝑑.  So here, let's assume the reference signal 𝑟(𝑡)    or 

𝑦𝑑(𝑡)  is constant.  So if the reference signal is constant, it is kind of a regulator that we already  

discussed and since you will be finding the transfer function of the entire system  and our main 

motivation is in this block, how we can design the control so that 𝑌(𝑆)  can  track 𝑅(𝑆) . 



And since we need to find the transfer function between the input and output, this is my reference  

signal to the block and this is the output from the block.  So 𝑅(𝑆)  can be your input to the entire 

block here.  So we need to find the relation between 𝑅(𝑆)  and 𝑌(𝑆).  So we will not assume the 

disturbance or noise. So this is the actual main transfer function in the system. 

 

So we'll neglect the disturbance term 𝑀𝑑(𝑡) .  And based on this assumption, we can write our 

system attitude aircraft, attitude motion,  we can write 𝐼�̈� = 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) .  And this equation 

further we can write 𝐾𝑝(𝑟 − 𝑦(𝑡)) .So here r is constant, we can just write r.  And taking the 

Laplace transform, we can write 𝐼𝑆2𝑌(𝑆) = 𝐾𝑝𝑅(𝑆) − 𝐾𝑝𝑌(𝑆) .  So here we have assumed the 

initial condition will be zero.  So this is the assumption for finding the transfer function that we 

already discussed.  And from this further we can write (𝐼𝑆2 + 𝐾𝑝)𝑌(𝑆) = 𝐾𝑝𝑅(𝑆) .  So from this 

we can write 
𝑌(𝑆)

𝑅(𝑆)
=

𝐾𝑝

𝐼𝑆2+𝐾𝑝
 .  So this is how we can write the closed loop transfer function  for this 

particular system.  So this is my reference signal, 𝑅(𝑆) and this is the controller, 𝐾𝑝.  This is 𝐸(𝑆)  

and this is the plant, 𝐺𝑝(𝑆), which is nothing but 
1

𝐼𝑆2
 ,and this is the 𝑌(𝑆)  and this is basically a 

feedback loop. 
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If you want to apply the direct expression, what you have done before,  we know 
𝑌(𝑆)

𝑅(𝑆)
=

𝐺𝑝(𝑆) 𝐺𝑐(𝑆)

1+𝐺𝑝(𝑆) 𝐺𝑐(𝑆)
 . This is the closed loop transfer function which relates between the output and input.  

So if you substitute the term,  𝐺𝑝(𝑆) 

𝑌(𝑆)

𝑅(𝑆)
=

1

𝐼𝑆2 𝐾𝑝

1 +
1

𝐼𝑆2  𝐾𝑝

  

So if you solve this expression, you'll get 
𝐾𝑝

𝐼𝑆2+𝐾𝑝
 .  The same expression we are getting.  So if you 

can remember this expression,  you can find the transfer function also.  So this is our transfer 

function for this system using PI control.  So I can say this is P control, proportional control, closed 

loop  aircraft  attitude control system. 

 



So now, as we'll discuss this, the denominator of the closed loop transfer function  talks about the 

number of poles in the system and the numerator talks about the number of zeros in the close loop 

transfer function.  That is very important.  So pole and zero, we can come up from any transfer 

function.  This is a closed loop transfer function and this is the poles, this is zeros. 

 

If ,for example, suppose we have an open loop transfer function here,then here also, we can come 

up with the poles and zeros.  The numerator will be poles, the denominator will be 0. 

 

This is the plant transfer function,  open loop transfer function we'll discuss later,  what is open 

loop and closed loop.  So this is the poles.  So poles from this closed loop transfer function,  the 

roots of the characteristic equation of the denominator basically.  This is the characteristic equation  

or the polynomial in the denominator part.  The result, if you find from the characteristic equation,  

maybe I have not discussed it. 

Characteristic equation basically,  the characteristic we write  1 + 𝐺𝑝(𝑆) 𝐺𝑐(𝑆) = 0 .  So in the 

closed loop transfer function,  this part we call the characteristic equation, 1 + 𝐺𝑝(𝑆) = 0 .  So 

now from this expression, we can get the characteristic equation, 𝐼𝑆2 + 𝐾𝑝 = 0 .  And further we 

can write 

𝑆2 = −
𝐾𝑝

𝐼
= 𝑆1,2 = ± 𝑖 √

𝐾𝑝

𝐼
  

So from these poles, it is clear that  the system will be oscillatory, why?  Because the solution will 

be in the terms of sine and cosine.  So if you place in our real and imaginary axis,  these poles, as 

I said before,  are basically 𝑆 = 𝜎 + 𝑗𝜔   So what is this?  This is the real part and this is the 

imaginary part.  So in this case, we are having only the imaginary part.  And in the S-plan, this is 

basically the S-plan we call,  and this is the real axis and this is the imaginary axis. 

 

I can say imaginary (S), this is the real (S).  So since we are having only imaginary poles,  we are 

having two poles, one is here and one is here.  Right, I can say this is √
𝐾𝑝

𝐼
 ,  and this is −√

𝐾𝑝

𝐼
 , in 

the imaginary axis.  
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So now if you see the response of the system,  the system response will be something,   𝑦(𝑡)  and 

t, if you see them in the time domain,  the response will be something like this.  So it will be 

oscillatory without peaking in the response. 
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So what is the takeaway from this example?  If you use PD, proportional control in our control 

block,  the response will be oscillatory behavior and if you connect to the aircraft system,  what 

exactly is practically happening?  Let me draw this figure.  It will give you some practical 

implications  of this concept.  So this is the line my aircraft would like to follow and this is the 

aircraft, for example. 

So this is the aircraft x-axis, this is my desired signal, r,  and so aircraft should follow this line.   

So here, about this line,  the aircraft will oscillate.  So suppose this is my spring,  and spring 

constant is 𝐾𝑝 ,  and this is the error e. 
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So this is the actual value of 𝑦(𝑡) .  So it means aircraft will oscillate  about the reference line r,  

and with the oscillation, 𝜔 √
𝐾𝑝

𝐼
 .   

So this is practically happening.  This aircraft  will not come to the reference line forever  because 

of the nature of the system response, the aircraft will oscillate  about the reference line.  This is 

actually what will happen.  So now, if you draw the closed loop diagram in this case,  so we are 

having, this is my r,  this is the error e, this is the control block 𝐾𝑝 ,  and this is output 𝑢(𝑡) ,  this 

is the plant, 
1

𝐼𝑆2
 ,  this is 𝑦(𝑡), but this is the negative feedback. 

(Refer Slide Time 21:45) 

 

So this is the structure of the P controlled attitude system. And this is the problem.  So from this 

kind of response,  we can say P controlled system  is just a mass spring system.  So if you connect 

to this kind of concept  to the mass spring system,  it is the same kind of response you'll be getting  

because of the mass spring damper system,  what is that expression?  We know 𝑚�̈� + 𝑏�̇� + 𝐾𝑥 =

0 . 

 

So 𝑏�̇� does not exist here.  So here, where I'm having this kind of response.  If you solve this 

equation,  we'll get exactly the same kind of response.  So it is similar to the mass spring system.  

So it means from the behavior, from the response,  undamped oscillatory attitude motion of the 

aircraft will be there.  So this is the problem  if you were spring for this particular attitude control  

system of the aircraft. 

 

Now to solve this problem, we need to consider another term,  which is called damper in the 

system.  So in the PD control system,  we'll put a derivative term to compensate for this kind of  

sustained oscillation behavior in the system.  Now let's look how the derivative control looks like.  

So the problem of  sustained oscillation in PD,  in P control system,  P means proportional control 

system,  is not desirable.  For this, we're gonna add  proportional  control,  plus derivative  for PD 

control,  to consider. 

 

So here, the PD control is given by law 𝑢(𝑡) = 𝐾𝑝(𝑡) + 𝐾𝑑�̇�(𝑡)  .This is the part of proportional 



control.  So 𝐾𝑝 is scaling factor and derivative control is 𝐾𝑑�̇�.  So here we are adding the derivative 

of error  to the proportional control. 

And here, 𝐾𝑑 ≻ 0   is the derivative gain.  Now, we'll find the transfer function for the controller 

law.  So the controller transfer function, we can write,  if you take the Laplace transform of this 

equation, 𝑈(𝑆) = 𝐾𝑝𝐸(𝑆) + 𝐾𝑑𝑆 𝐸(𝑆) .  And from this,  we can write 
𝑈(𝑆)

𝐸(𝑆)
= 𝐾𝑝 + 𝐾𝑑𝑆 .  So how 

the sustained oscillation can be damped out using the PD controller. 

 

So this is my reference attitude the aircraft should follow.  Let's assume this is 𝑟(𝑡)  or 𝜃𝑑(𝑡)  or 

𝑦𝑑(𝑡),  same thing, the notation just changed.  And this is the aircraft system. And this is the actual  

value output 𝑦(𝑡). 
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And in proportional control,  we have spring here.  And derivative control we are damping,  we 

are adding a damping term in this expression.  So due to the damping,  the oscillation which is due 

to the spring can die out.  So this is the error e.  So initially,  it may have some oscillation,  but 

after some time,  and due to this damping term, it will go out. 

 

So let's look at how it is happening.  Similar to the previous control here,  let's assume 𝑟(𝑡)  is a 

constant reference attitude to be tracked.  And similar to neglecting the disturbance in the aircraft 

equation of attitude motion,  yields to be 

𝐼�̈� = 𝐾𝑝𝑒 + 𝐾𝑑�̇� = 𝐾𝑝(𝑟 − 𝑦(𝑡)) + 𝐾𝑑(�̇� − 𝑦(𝑡)) 

 

So here r is constant, we are assuming.  So we can write 𝐾𝑝(𝑟 − 𝑦(𝑡) − 𝐾𝑑𝑦(𝑡) .  So this is the 



expression we are getting.  And further we can write 𝐼�̈� + 𝐾𝑑�̇� + 𝐾𝑝𝑦 = 𝐾𝑝𝑟 .  And if you take 

Laplace Transform, we have 𝐼𝑆2𝑌(𝑆) + 𝐾𝑑𝑆 𝑌(𝑆) + 𝐾𝑝𝑌(𝑆) = 𝐾𝑝𝑅(𝑆) .  And further we can 

write 

𝑌(𝑆)

𝑅(𝑆)
=

𝐾𝑝

𝐼𝑆2 + 𝐾𝑑𝑆 + 𝐾𝑝
=

𝐾𝑝

𝐼

𝑆2 +
𝐾𝑑

𝐼 𝑆 +
𝐾𝑝

𝐼

  

So this is the closed loop transfer function of the PD controlled attitude motion of the aircraft.  So 

now let's look at how this oscillation is going to be damped out. 

 

And as we said, this is the characteristic polynomial which gives us the  number of poles in the 

closed loop transfer function.  So let's write the characteristic equation.  We can write 𝑆2 +
𝐾𝑑

𝐼
𝑆 +

𝐾𝑝

𝐼
= 0 .  From this we can write,  so this is the second row system, we have two poles.  We can 

write 

𝑆1,2 =
−

𝐾𝑑

𝐼 ± √(
𝐾𝑑

𝐼 ) −  4 
𝐾𝑝

𝐼
2

  

So this is the number of poles in the system.  So now if you see these poles located in S domain,  

this is maybe somewhere here.  So there are two poles somewhere here.  So based on the values, 

even if the value,  this part comes out to be imaginary somewhere,  maybe here or here, but the 

real part is negative.  So due to this, if you solve this equation,  we'll have an exponential term in 

the solution.  So the system may start maybe like oscillation,  but after sometime it will damp out. 
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So this is why it is damping out?  Because of the damp part in the system  and because of the 

negative term in the poles.  This is how we can modify the response,  what you had in the 

proportional control.  But let us stop it here.  In the next lecture,  we'll be discussing how we can 



design PID control  and how the disturbance in the system can be considered  and how due to the 

disturbance we can modify the control response.  Thank you very much. 

 


