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Let us continue the discussion now on the numerical analysis part so far, we have looked at the 

finding of the roots, whether it is a normal equation and polynomial equation. Then we move 

to the system of linear equation, which is a kind of connected with the previous discussion 

when we talked about linear algebra or the matrices and all these things. But this is more like 

an in point of view of how you implement them as a numerical code where you can solve the 

linear system like Ax = b.  

 

And then finally, I mean, we have looked at some of the interpolation and approximations 

which are often used when you actually expand a function are in the polynomial. Now, in this 

session, actually we are going to talk about a little bit of integration and differentiation, not in 

very details, but we will touch upon some of the important ways that how one can look at all 

these and then we move to the solution of the differential equations.  

(Refer Slide Time: 01:13) 

 
So, let us start with the differentiation and integration so, the let us say if a function explicitly 

or defined that set up some points, we can find out all these for differentiation and integration. 

Now, first, we will start with the numerical differentiation, so when we talk about numerical 

differentiation, actually there are methods which can be applied, there are 3 ways one can do 

that, one is the which are the methods which are based on interpolation.  
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So, now you see where interpolation becomes important, because this is what we have already 

discussed. Then there are methods which are sort of devised based on finite differences. So, 

this we have also looked at it how and there are methods which are based on undetermined 

coefficients. So, these are the 3 ways one can find the numerical differentiation, let us start with 

the methods which are based on interpolation.  

 

So, in that case, what happens let us say there is a given function 𝑓(𝑥) at a set of (n + 1) distinct 

tabular points as that 𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛. So, we can first write the interpolating polynomial 𝑃𝑛(𝑥), 

and then differentiate the 𝑃𝑛(𝑥) to r times, so we can do that r lies 1 ≤ 𝑟 ≤ 𝑛. So, to obtain, so 

once we do that so, we will get 𝑃𝑛
𝑟(𝑥). So, the value of this at let us say point 𝑥∗, which may 

be a tabular point or a non-tabular point gives the approximate, so these will give approximate 

value of 𝑓𝑟(𝑥) at 𝑥 = 𝑥∗.  

 

So, we can use the Lagrange interpolating polynomial such that  

𝑃𝑛(𝑥) = ∑ 𝑙𝑖(𝑥)

𝑛

𝑖=0

𝑓(𝑥𝑖) 

this is 1 and we can have the error term like  

𝐸𝑛(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) 

which is one can write like  

𝐸𝑛(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛)

(𝑛 + 1)!
𝑓(𝑛+1)(𝜉) 

so this is equation 2.  

(Refer Slide Time: 04:14) 
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So, what we can obtain is that  

𝑓𝑟(𝑥∗) = 𝑃𝑛
𝑟(𝑥) 

where 1 ≤ 𝑟 ≤ 𝑛 and we can get  

𝐸𝑛
𝑟(𝑥) = 𝑓𝑟(𝑥∗) − 𝑃𝑛

𝑟(𝑥∗) 

so, this is equation number 3. So, this is the error of the differentiation so, that is what we get. 

Now, the error term in equation 3 can be obtained by using formulas such that like 

1

(𝑛 + 1)!

𝑑𝑗

𝑑𝑥𝑗
[𝑓(𝑛+1)(𝜉)] =

𝑗!

(𝑛 + 𝑗 + 1)!
𝑓(𝑛+𝑗+1)(𝜂𝑗) 

where j goes from 1, 2 to r. 

 

And where the points like  

min(𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, 𝑥) < 𝜂𝑗 < max(𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, 𝑥) 

so, this is what it lies. Now, in the tabular points are equispaced we may use Newton forward 

or backward difference formula for let us say n =1 one can get 

𝑓(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1
𝑓0 +

𝑥 − 𝑥0

𝑥1 − 𝑥0
𝑓1 

and  

𝑓′(𝑥𝑘) =   
𝑓1 − 𝑓0

𝑥1 − 𝑥0
 

where k goes from 0, 1 and so on. 

 

And differentiating the expression for error interpolation, we get 

𝐸1(𝑥) =
1

2
(𝑥 − 𝑥0)(𝑥 − 𝑥1)𝑓′′(𝜉) 
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 where 𝑥0 < 𝜉 < 𝑥1. So, we get when at 𝑥 = 𝑥0 and 𝑥 = 𝑥1 what we can get is that  

𝐸1
(1)(𝑥0) = 𝐸1

(1)(𝑥1) =
𝑥0 − 𝑥1

2
𝑓′′(𝜉) 

so this is what you get. So, these are set of equations for let us say equation 4 so, this is where 

𝑥0 < 𝜉 < 𝑥1.  

(Refer Slide Time: 07:28) 

 
Similarly, one can find out the error approximation for like the n = 2, so if n = 2 then what you 

finally get is that you get some similar way you can  

𝑓(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
𝑓0 +

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
𝑓1 +

(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥2)
𝑓2 

So, now, the error for that would be  

𝐸1(𝑥) =
1

6
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)𝑓′′′(𝜉) 

where 𝑥0 < 𝜉 < 𝑥2. 

 

And similarly, you can find  

𝑓′(𝑥0) =
2𝑥0 − 𝑥1 − 𝑥2

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
𝑓0 +

𝑥0 − 𝑥2

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
𝑓1 +

𝑥0 − 𝑥1

(𝑥2 − 𝑥0)(𝑥2 − 𝑥2)
𝑓2 

so, these are let us say equation 5. So, we can carry out the similar exercise and then finally, 

this is where the things are not, but finally if things are for equispaced tabular points things 

would become much simpler. So, this one can write that  

𝑓′(𝑥0) =  
(𝑓1 − 𝑓0)

ℎ
 

𝑓′′(𝑥0) =  
(−3𝑓0 + 4𝑓1 − 𝑓2)

2ℎ
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or  

𝑓′′(𝑥0) =  
(𝑓0 − 2𝑓1 + 𝑓2)

ℎ2
 

(Refer slide Time: 10:15) 

 
And similarly, the error term would come along the way like this is for equispaced system 

where 

𝐸1
(1)(𝑥0) = −

ℎ

2
𝑓′′(𝜉) 

and then 

𝐸2
(1)(𝑥0) = −

ℎ2

3
𝑓′′′(𝜉) 

And 

𝐸2
(2)(𝑥0) = −ℎ𝑓′′′(𝜉) 

so, all this where 𝑥0 < 𝜉 < 𝑥2. 

 

So, essentially you can write a generic expression of that  

𝐸𝑛
(𝑟)(𝑥𝑘) = |𝑓(𝑟)(𝑥𝑘) − 𝑃𝑛

(𝑟)(𝑥𝑘)| = 𝑐ℎ𝑝 + 𝑂(ℎ𝑝+1) 

so C is a constant independent of h then the method is said to be order of so, here the order 

would be a p th order. So, you can see the one which for n = 1 that would be so, here what we 

wrote this is first order and this the other 2 written here this is second order.  

 

So, we can determine the from this what would be the now, we look at some methods which is 

based on finite differences. So, here let us say consider relationship  
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𝐸𝑓(𝑥) = 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) + ⋯ 

= (1 + ℎ𝐷 +
ℎ2

2!
𝐷2 + ⋯ ) 𝑓(𝑥) = 𝑒ℎ𝐷𝑓(𝑥) 

Or 

𝐷 =
𝑑

𝑑𝑥
 

so, difference operators, so, this is called differential operators.  

(Refer Slide Time: 12:50) 

 
Now, symbolically what we can write that  

𝐸 = 𝑒ℎ𝐷 

or  

ℎ𝐷 = ln 𝐸 

and we have  

𝛿 = 𝐸
1
2 − 𝐸−

1
2 = 𝑒

ℎ𝐷
2 − 𝑒−

ℎ𝐷
2 = 2 sinh (

ℎ𝐷

2
) 

Hence 

ℎ𝐷 = 2𝑠𝑖𝑛−1(𝛿/2) 

Now we have ℎ𝐷 = ln 𝐸. So, what we can write? 

 

So, where  

𝜇 = √1 +
𝛿2

4
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is the averaging operator and this is used to avoid offset of steep points in the method. Now, 

retaining various order differences in these equations here, which is shown here, we obtained 

different order methods for a given value of r.  

(Refer Slide Time: 16:05) 

 
Like for let us say for if we get so, if we see this this is what how you can get a method which 

is based on this difference operator. And now, for different values of r let us say for r = 1 what 

do you get that 𝑓′(𝑥𝑘)𝑎𝑛𝑑 𝑓′′(𝑥𝑘). 

 

So, these are the different set of order of a system that you can get this is first order this is 

second order and this is forward this is backward and this is central. So, this is what the finite 

difference operator does and gets you different kinds of these things.  

(Refer Slide Time: 17:27) 
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So, now, what we can look at is that methods which are based on undetermined coefficient so, 

here we write that  

ℎ𝑟𝑓(𝑟)(𝑥𝑘) = ∑ 𝑎𝑖𝑓(𝑥𝑘+1)

𝑚

𝑖=−𝑚

 

for systematic arrangement of tabular points are what and let us say we write  

ℎ𝑟𝑓(𝑟)(𝑥𝑘) = ∑ 𝑎𝑖𝑓(𝑥𝑘+1)

𝑚

𝑖=±𝑚

 

So, this is written for symmetric arrangement of tabular point that means. 

 

So, that things are not in a symmetric order and the error term would be defined as  

𝐸𝑟(𝑥𝑘) =
1

ℎ𝑟
[ℎ𝑟𝑓(𝑟)(𝑥𝑘) − ∑ 𝑎𝑖𝑓(𝑥𝑘+1)] 

So, this would be now the coefficient 𝑎𝑖 here rather these all 3 sets of equations are determined 

here or here in this by recurring the method to be particular order. So, we expand each term in 

either of this equation or first one of the second one and the right hand side in Taylor series 

about the point 𝑥𝑘. 

 

And then equating the coefficient various orders of derivative on both sides, here essentially 

you have to expand as Taylor series and then equate coefficient. So, that gives the particular 

order of the method. So, whether it could be the first order or second order whatever it is, it is 

going to come out to be like that. 

(Refer Slide Time: 20:08) 
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So, now one can do all this like for example, one can expand these things and find out the 

coefficients for r = 1, m = 1 case, then you can find all coefficients which will come like 𝑎0 =

0, 𝑎−1 = −𝑎1 = −
1

2
. So, where you get  

ℎ𝑓𝑘
′ =

1

2
(𝑓𝑘+1 − 𝑓𝑘−1) 

or similarly, and the error term would be  

𝐸𝑟𝑟𝑜𝑟 = −
ℎ2

6
𝑓′′′(𝜉) 

for 𝑥𝑘−1 < ξ < 𝑥𝑘+1.  

 

Similarly, you can expand r = 2, m = 1 and you will get all these terms like  

𝑎−1 = 𝑎1 = 1, 𝑎0 = −2 

So, where are you get  

𝑓𝑘
′′ =

1

ℎ2
(𝑓𝑘−1 − 2𝑓𝑘 + 𝑓𝑘+1) 

So, where the error would be  

𝐸𝑟𝑟𝑜𝑟 = −
ℎ2

12
𝑓′′′′(𝜉) 

where 𝑥𝑘−1 < ξ < 𝑥𝑘+1, so, these are second order system one can see that and one can find 

for m = 2 also for this thing.  

(Refer Slide Time 21:45) 

 
Now, there is another way one can look at is that some sort of an extrapolation method so, 

obtain accurate result, we need to use higher order methods which require a large number of 

function evaluations and may cause growth of round off errors. So, it is generally possible to 
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optimum higher order solution by combining the computed values obtaining by using a certain 

lower order method with finite state. 

 

Let us say for example, 𝑔(𝑥) denoted a quantity  

𝑔(ℎ) = 𝑔(𝑥) + 𝐶ℎ𝑝 + 𝑂(ℎ𝑝+1) 

or  

𝑔(𝑞ℎ) =  𝑔(𝑥) + 𝐶𝑞𝑝ℎ𝑝 + 𝑂(ℎ𝑝+1) 

So, from here once we eliminate C what we get  

𝑔(𝑥) =
𝑞𝑝𝑔(ℎ) − 𝑔(𝑞ℎ)

𝑞𝑝 − 1
+  𝑂(ℎ𝑝+1) 

So, this defines a method of order (p + 1) order, so this order would be (p + 1) order, so this is 

called, this procedure is called the extrapolation or Richardson extrapolation, if the error term 

of the method can be written as a power series is h then repeating this extrapolation term, so, 

what we can write for the error you can write  

𝐸(𝑥𝑘) = 𝐶1ℎ + 𝐶1ℎ2 + ⋯ 

then we have  

𝑔(ℎ) = 𝑔(𝑥) + 𝐶1ℎ + 𝐶1ℎ2 + ⋯ 

So, essentially one can write 

𝑔𝑝(ℎ) =
2𝑝𝑔(𝑝−1)(ℎ/2) − 𝑔(𝑝−1)(ℎ)

2𝑝 − 1
 

where p goes from 1, 2 so on and 𝑔0(ℎ) = 𝑔(ℎ).  

(Refer Slide Time: 24:20) 

 
So, then one can find the extrapolation table so, like you can see this is what the extrapolation 

table what so, this is the order of the system, so, this will be order this is the step. So, this is 
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first order, second order, third order or fourth order and this is what the stepwise similarly, how 

you get these things, so, this gives you an idea about how to write all these. 

(Refer Slide Time: 24:48) 

 
Now, we can write also partial differentiation like for example, we can write  

𝜕𝑓

𝜕𝑥(𝑥𝑖,𝑦𝑖)
 

Which we can write as shown on the screen. 

 

Similarly, one can write  

𝜕𝑓

𝜕𝑦(𝑥𝑖,𝑦𝑖)

 

similarly, one can write the second derivative like 

𝜕2𝑓

𝜕𝑥2
 

or  

𝜕2𝑓

𝜕𝑦2
 

And  

𝜕2𝑓

𝜕𝑥𝜕𝑦
 

(Refer Slide Time: 27:42) 
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So, this is another one which you can have now the thing which one can have also optimum 

choice of step length like any numerical differentiation method, the area of approximation or 

the truncation error is of the form of 𝐶ℎ𝑝. Now, which should be tends to 0 so, this error should 

tend to 0 and h tends to 0. However, the method which approximates 𝑓𝑟(𝑥) contents ℎ𝑟 in the 

denominator.  

 

So, h is successively decreased to small values, the truncation error also decreases, but the 

round off error in that method may increase when we are dividing by the smaller number so, 

in this case truncation error decreases, but the round off error may increase. So, the errors 

should be always within the limit and one so to see the effect of the sound of error in a numerical 

difference in method. 

 

Let us consider  

𝑓′(𝑥0) =
𝑓(𝑥1) − 𝑓(𝑥0)

ℎ
−

ℎ

2
 𝑓′′(𝜉) 

where 𝑥0 < 𝜉 < 𝑥1. So, which you can write  

𝑓′(𝑥0) = 𝑅𝐸 + 𝑇𝐸 

Now, round off error plus truncation error this is round off error truncation error. So,  

𝜖 = 𝑚𝑎𝑥(|𝜖1|, |𝜖2|) 

And 

𝑀2 = max
𝑥0≤𝑥≤𝑥1

|𝑓′′(𝑥)| 

 

(Refer Slide Time: 29:55) 

408



 
So, the round off error magnitude should be 

|𝑅𝐸| ≤
2𝜖

ℎ
 

and  

|𝑇𝐸| ≤
ℎ

2
𝑀2 

So, we may call that a value h an optimum value of which one the following criteria is satisfied. 

So, one is that round off error would be truncation error or round off error plus truncation error 

is minimum. So, now, if we use the first criteria here, then what we get 

2𝜖

ℎ
=

ℎ

2
𝑀2 

So, from here we get 

ℎ𝑜𝑝𝑡 = 2√𝜖/𝑀2 

 and round off error and truncation error they would be  

|𝑅𝐸| = |𝑇𝐸| = √𝜖𝑀2 

So, now, if we use the second criteria, then this would be  

2𝜖

ℎ
+

ℎ

2
𝑀2 = 𝑚𝑖𝑛 

which gives 

−
2𝜖

ℎ2
+

𝑀2

2
= 0 

where this is we get  

ℎ𝑜𝑝𝑡 = 2√𝜖/𝑀2 
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So, the minimum tolerance is  

𝑀𝑎𝑥. 𝑇𝑜𝑙. =  2√𝜖/𝑀2 

so, this is what we get. So, now this means that if the round of error is order of 10−𝑘, then 

𝑀2~𝑂(1), then the accuracy given by the method may be approximately the order of accuracy 

would be order of sort of  

𝑎𝑐. ~ 10−𝑘/2 

So, this is how one can find out the optimum step size, what should be taken into consideration. 

So, that is what we wanted to talk about on differentiation, stop it here and continue the 

integration in the next session. 

410


