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So, let us continue the discussion on interpolation. So, we are talking about different kinds of 

interpolation for function. And we have looked at a few different ways. Now we are going to 

talk about the other one now.  
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So, what we are going to talk about now the Piecewise and Spline interpolation, so which we 

are going to like the other way of doing things. So, for example, piecewise and spline 

interpolation, so, now in order to keep the degree of the interpolating polynomial small and 

also to obtain accurate results, we use piecewise interpolation. So, now for piecewise 

interpolation, what we do? Let us say, we replace 𝑓(𝑥) on |𝑥𝑖−1, 𝑥𝑖| with the Lagrange linear 

polynomial, so that we can write   

𝐹1(𝑥) = 𝑃𝑖𝑙(𝑥) =
𝑥 − 𝑥𝑖

𝑥𝑖−1 − 𝑥𝑖
𝑓𝑖−1 +

𝑥 − 𝑥𝑖−1

𝑥𝑖 − 𝑥𝑖−1
𝑓𝑖 

i goes from 1 to n. 

 

Now similarly, the Piecewise Cubic Hermite, so, if somebody write piecewise cubic Hermite 

interpolation, so, in that case, we have the values of 𝑓(𝑥) and 𝑓′(𝑥) which are given at point 

𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛 then we can replace the function 𝑓(𝑥) within like this interval, like  𝐹3(𝑥) is a 

cubic Hermite interpolation polynomial. 
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And we get  

𝐵𝑖−1 =
(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)

2

(𝑥𝑖−1 − 𝑥𝑖)2
 

and  

𝐵𝑖 =
(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖−1)2

(𝑥𝑖 − 𝑥𝑖−1)2
 

So, we note that this piecewise cubic Hermite interpolation requires prior knowledge of 𝑓′(𝑥𝑖) 

for i 1 to n and also if we only use a 𝑓𝑖 the resulting piecewise cubic polynomial still interpolate 

𝑓(𝑥) at 𝑥0 and all this. Since 𝑃3(𝑥) is twice continuously differentiable on a and b we determine 

𝑀𝑖 is using this condition. Such an interpolation is called the spline interpolation. 

 

So, now we will look at this cubic spline interpolation, so we assume that continuity of second 

derivative which is already given here. So, what we can write then that  

lim
𝜖→0

𝐹′′(𝑥𝑖 + 𝜖) = lim
𝜖→0

𝐹′′(𝑥𝑖 − 𝜖) 

and what we can get that  

lim
𝜖→0

𝐹′′(𝑥𝑖 + 𝜖) =
6

ℎ𝑖+1
2

(𝑓𝑖+1 − 𝑓𝑖) −
4

ℎ𝑖+1
𝑓𝑖

′ −
2

ℎ𝑖+1
𝑓𝑖+1

′  

So, we can say that,  

lim
𝜖→0

𝐹′′(𝑥𝑖 + 𝜖) =
6

ℎ𝑖
2

(𝑓𝑖−1 − 𝑓𝑖) +
2

ℎ𝑖
𝑓𝑖−1

′ +
4

ℎ𝑖
𝑓𝑖

′ 

So, if we equate the right hand side what we get? 
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That,  

1

ℎ𝑖
𝑓𝑖−1

′ + (
2

ℎ𝑖
+

2

ℎ𝑖+1
) 𝑓𝑖

′ +
1

ℎ𝑖+1
𝑓𝑖+1

′ =
3(𝑓𝑖−1 − 𝑓𝑖)

ℎ𝑖
2 +

3(𝑓𝑖+1 − 𝑓𝑖)

ℎ𝑖+1
2  

where i goes from 1 to (n – 1). So, these are (n – 1) equation and (n + 1) unknowns. So, 

𝑓0
′, 𝑓1

′, 𝑓2
′, … . 𝑓𝑛

′, so, these are the unknowns. But if not double prime or 𝑓𝑛
′′ are prescribed then 

from these equations what we get is that 

2

ℎ1
𝑓0

′ +
1

ℎ1
𝑓1

′ =
3(𝑓1 − 𝑓0)

ℎ1
2 −

1

2
𝑓0

′′ 

Similarly,  

1

ℎ𝑛
𝑓𝑛−1

′ +
2

ℎ𝑛
𝑓𝑛

′ =
3(𝑓𝑛 − 𝑓𝑛−1)

ℎ𝑛
2 +

1

2
𝑓𝑛

′′ 

Here, the derivative of 𝑓1
′ which goes from, i goes from 0 to n are determined by solving these 

equations and then we can determine other things. Now, for equi-spaced points, so this 

particular equation here and this one, they will now, we can replace that thing. 
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With the equi-spaced system, so we can write,  

𝑓𝑖−1
′ + 4𝑓𝑖

′ + 𝑓𝑖+1
′ =

3

ℎ
(𝑓𝑖+1 − 𝑓𝑖−1) 

where i goes from 1 to (n – 1) and  

2𝑓0
′ + 𝑓1

′ =
3

ℎ
(𝑓1 − 𝑓0) −

ℎ

2
𝑓0

′′ 

𝑓𝑛−1
′ + 2𝑓𝑛

′ =
3

ℎ
(𝑓𝑛 − 𝑓𝑛−1) +

ℎ

2
𝑓𝑛

′′ 

where we have, 𝑥𝑖 − 𝑥𝑖−1 = ℎ where, i goes from 1 to n. So, this procedure here will give us 

the values of a 𝑓𝑖
′. 

 

So, this actually gives us 𝑓𝑖
′. Now, this one we substitute in the piecewise cubic interpolating 

polynomial, we obtain the required cubic spline polynomial. Also, one has to note that here, 

one has to solve only (𝑛 − 1) × (𝑛 − 1) or (𝑛 + 1) × (𝑛 + 1), tri diagonal system for equation 

𝑓𝑖
′. So, this method is computationally much less expensive than the direct method. 

 

So, this is one of the biggest advantages of this particular method. So, similarly, here what we 

have talked about here is that, this is for continuity of second derivative. Now similarly, one 

can find out this cubic spline interpolation for fast derivative also. So, that one can look at some 

of the textbook and find out that thing. So, essentially the point here is that you can also get 

like cubic spline interval interpolation for continuity for first derivative, so that is what is there. 

So, this can be, one can find that out too that, what would be that thing? 
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So, now, we look at some other thing like bivariate interpolation. So, here first thing that we 

will look at is the Lagrange bivariate interpolation. So, if the values of the function 𝑓(𝑥, 𝑦) at 

(𝑚 + 1) 𝑎𝑛𝑑 (𝑛 + 1) distinct point are given then the polynomial  

𝑃(𝑥𝑖 , 𝑦𝑗) = 𝑓(𝑥𝑖 , 𝑦𝑗) = 𝑓𝑖,𝑗 

where, i goes from 0 to m, j goes from 0 to n, so which could be given as the  

𝑃𝑚,𝑛(𝑥, 𝑦) = ∑ ∑ 𝑋𝑚,𝑖(𝑥)𝑌𝑛,𝑗(𝑥)

𝑚

𝑖=0

𝑛

𝑗=0

𝑓𝑖,𝑗 

Now, here we have  

𝑋𝑚,𝑖(𝑥) =
𝜔(𝑥)

(𝑥 − 𝑥𝑖)𝜔′(𝑥𝑖)
 

And 

𝑌𝑛,𝑗(𝑦) =
𝜔∗(𝑦)

(𝑦 − 𝑦𝑗)𝜔∗′(𝑦𝑗)
 

So, where  

𝜔(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑚) 

And 

𝜔∗(𝑦) = (𝑦 − 𝑦0)(𝑦 − 𝑦1) … (𝑦 − 𝑦𝑛) 

so this is how one can. Similarly, I mean, there are Newton's bivariate interpolations also one 

can find out. Now, there are other, I mean, these are different kinds of interpolation that one 

can do and different techniques are used for different kinds of system depending on what is 

user requirement. 
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So, we will move to a little bit of talking about approximation. So, in that will, let us say we 

approximate a given function 𝑓(𝑥) on a and b by which has the form like 

𝑓(𝑥) = 𝑃(𝑥, 𝑐0, 𝑐1, … , 𝑐𝑛) = ∑ 𝑐𝑖ϕ𝑖(𝑥)

𝑛

𝑖=0

 

and this ϕ𝑖(𝑥) goes from i = 0 to n or (n + 1) approximately chosen, linearly independent 

function. So, these are (n + 1) linearly independent function and 𝑐0, 𝑐1, .., these are the 

parameters to be defined such that E which is defined  

𝐸(𝑓; 𝑐) = ‖𝑓(𝑥) − ∑ 𝑐𝑖ϕ𝑖(𝑥)

𝑛

𝑖=0

‖ 

So, this is minimum where, this guy is the norm which is well defined. By using these different 

norms, we can find the different type of actual approximation like once a particular norm is 

chosen, there is a function chosen, the function which minimizes the error here, I mean, let us 

say, this is function 1 and this is 2, called the best approximation and the function ϕ𝑖(𝑥) is 

called a coordinate function. 

 

Now, one such thing is that one can say is that, you have like, least square approximation, so 

what you do here? We determine the parameters 𝑐0 to 𝑐𝑛, such that 

𝐼( 𝑐0, 𝑐1, … , 𝑐𝑛) = ∑ 𝑊(𝑥𝑘) [𝑓(𝑥𝑘) − ∑ 𝑐𝑖ϕ𝑖(𝑥)

𝑛

𝑖=0

]

2𝑁

𝑘=0

 

so that is minimum. So that is what we get. Here the values 𝑓(𝑥) are given at (n + 1) distinct 

point.  
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Now, for function which are continuous on a and b, we determined 

𝐼( 𝑐0, 𝑐1, … , 𝑐𝑛) = ∫ 𝑊(𝑥) [𝑓(𝑥) − ∑ 𝑐𝑖ϕ𝑖(𝑥)

𝑛

𝑖=0

]

2
𝑏

𝑎

 

This is also minimum where 𝑊(𝑥) > 0 is the weight function, so this is the weight function. 

The necessary condition for, let us say, we say this is equation 3 and this is 4. So, the necessary 

condition for 3 and 4 to have a minimum value is that,  

𝜕𝐼

𝜕𝑐𝑖
= 0 

for i goes to 0, 1 to n. 

 

So, which gives a system of (n + 1) linear equation and where we have (n + 1) unknown and 

which takes the form like  

∫ 𝑊(𝑥) [𝑓(𝑥) − ∑ 𝑐𝑖ϕ𝑖(𝑥)

𝑛

𝑖=0

] ϕ𝑗(𝑥)𝑑𝑥 = 0
𝑏

𝑎

 

where j goes from 0 to n. So, the equations are called the normal equations these equations, I 

mean, either this or one can write in this equation like that 

∑ 𝑊(𝑥𝑘) [𝑓(𝑥𝑘) − ∑ 𝑐𝑖ϕ𝑖(𝑥𝑘)

𝑛

𝑖=0

] ϕ𝑗(𝑥𝑘

𝑁

𝑘=0

) = 0 

So, these are called the normal equations. 
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Now, for larger normal equation become ill condition where ϕ𝑖(𝑥) = 𝑥𝑖 and this difficulty can 

be avoided if the function ϕ𝑖(𝑥) are so chosen that, they are orthogonal with respect to the 

weight function over on a and b. 
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Such that what we write that  

∑ 𝑊(𝑥𝑘)ϕ𝑖(𝑥𝑘)ϕ𝑗(𝑥𝑘

𝑁

𝑘=0

) = 0 

i not equal to j or one can say 

∫ 𝑊(𝑥)ϕ𝑖(𝑥)ϕ𝑗(𝑥)𝑑𝑥 = 0
𝑏

𝑎

 

where, i not equal to j. So, if the function ϕ𝑖(𝑥) is orthogonal then, what we can get? That 

𝐶𝑖 =
∑ 𝑊(𝑥𝑘)ϕ𝑖(𝑥𝑘)ϕ𝑗(𝑥𝑘

𝑁
𝑘=0 )

∑ 𝑊(𝑥𝑘)ϕ𝑖
2(𝑥𝑘)𝑁

𝑘=0

 

where i goes from 0 to n and from other expression like from this one we can get from this guy. 

So, let us say this is 5, this is 6, so, this is from 6 now, from 5 what do we get  

𝐶𝑖 =
∫ 𝑊(𝑥)ϕ𝑖(𝑥)𝑓(𝑥)𝑑𝑥

𝑏

𝑎

∫ 𝑊(𝑥)ϕ𝑖
2(𝑥)𝑑𝑥

𝑏

𝑎

 

so now, this is what I mean, you get on this. 
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Now, we can look at in Gram Schmidt orthogonalization process which is also you have talked 

about this. So, given a function ϕ𝑖(𝑥) the polynomial ϕ𝑖
∗(𝑥) orthogonal on a and b, then we 

can find out we have like, ϕ0
∗(𝑥) = 1,  

ϕ𝑖
∗(𝑥) = 𝑥𝑖 − ∑ 𝑎𝑖𝑟

𝑖−1

𝑟=0

ϕ𝑟
∗(𝑥) 

 where,  

𝑎𝑖𝑟 =
∫ 𝑊(𝑥)𝑥𝑖ϕ𝑟

∗(𝑥)𝑑𝑥
𝑏

𝑎

∫ 𝑊(𝑥)(ϕ𝑟
∗(𝑥))

2
𝑑𝑥

𝑏

𝑎

 

where, i goes from 0 to n. So, what a discrete set of points we replace the integrals by this 

essentially the summation.  

(Refer Slide Time: 21:55) 

 

392



Now, another thing which is possibly can happen is that uniform or minmax polynomial 

approximation, so that is another thing. So, taking that approximating polynomial for a 

continuous function of 𝑓(𝑥) on a and b in the form like  

𝑃𝑛(𝑥) = 𝐶0 + 𝐶1𝑥 + ⋯ + 𝐶𝑛𝑥𝑛 

So, we determined 𝐶0, 𝐶1, … 𝐶𝑛 such that the derivation which is  

𝐸𝑛(𝑓, 𝐶0, 𝐶1, … 𝐶𝑛) = 𝑓(𝑥) − 𝑃𝑛(𝑥) 

which satisfies this condition that  

max
𝑎<𝑥<𝑏

|𝐸𝑛(𝑓, 𝐶0, 𝐶1, … 𝐶𝑛)| = min
𝑎<𝑥<𝑏

|𝐸𝑛(𝑓, 𝐶0, 𝐶1, … 𝐶𝑛)| 

So, what if we denote  

𝜖𝑛(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) 

and  

𝐸𝑛(𝑓, 𝑥) = max
𝑎<𝑥<𝑏

|𝜖𝑛(𝑥)| 

then, there are at least (n + 2) points like in 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛+1 = 𝑏which would be 

where Chebyshev equi-oscillation theorem says. 
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That if 

i) 𝜖(𝑥𝑖) = ±𝐸𝑛 where, i goes to 0 to n 

ii) 𝜖(𝑥𝑖) = −𝜖(𝑥𝑖+1) where, i = 0 to n.  

So, the best uniform or minimax polynomial approximation is uniquely determined under the 

conditions of these 2. It may be said that, I mean, it may be the second one actually implies 

that, 𝜖′(𝑥𝑖) = 0 for i = 1 to n. So, this is what it implies. So, this is what another thing that one 

can get is that Chebyshev polynomial. 
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So, the Chebyshev polynomial of first kind 𝑇𝑛(𝑥) which is defined on [-1, 1] which can be 

written as that  

𝑇𝑛(𝑥) = cos(𝑛𝑐𝑜𝑠 −1𝑥 ) = cos 𝑛𝜃 

Or 

𝜃 = 𝑐𝑜𝑠 −1𝑥 

Or 

𝑥 = cos 𝜃 

So, this polynomial satisfies the differential equation  

(1 − 𝑥2)𝑦′′ − 𝑥𝑦′ + 𝑛2𝑦 = 0 

So, one independent solution gives 𝑇𝑛(𝑥) and the second independent solution is given by 

𝑢𝑛(𝑥) = sin 𝑛𝜃 

we note that 𝑢𝑛(𝑥) is not a polynomial.  
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The Chebyshev polynomial of second kind denoted by the second kind is denoted by, 𝑢𝑛(𝑥) 

which is  

𝑢𝑛(𝑥) =
sin(𝑛 + 1)𝜃

sin 𝑛𝜃
=

sin((𝑛 + 1)𝑐𝑜𝑠−1𝑥)

√1 − 𝑥2
 

So, this is a polynomial of degree n. So, Chebyshev polynomial of 𝑇𝑛(𝑥) satisfies the 

recurrence relation like,  

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥) 

where,  

𝑇0(𝑥) = 1 
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and 𝑇1(𝑥) = 𝑥. So, you can similarly extract the other, if 𝑇0(𝑥) = 1. So, also, what you can 

have been that  

𝑇𝑛(𝑥) = cos 𝑛𝜃 = 𝑅𝑒 (𝑒𝑖𝑛𝜃) = 𝑅𝑒 (cos 𝜃 + 𝑖 sin 𝜃)𝑛 = 2𝑛−1𝑥𝑛 + 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒 

and the Chebyshev polynomial 𝑇𝑛(𝑥) has certain properties which like, one can see. 
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In any of these books that this will follow some properties one I quickly like to touch upon is 

that the, so this Chebyshev polynomial approximation. So, let us Chebyshev series expansion 

𝑓(𝑥) belongs to C[-1,1] which is written as 

𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑖𝑇𝑖(𝑥)

∞

𝑖=1

 

then the partial sum would be 

𝑃𝑛(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑖𝑇𝑖(𝑥)

𝑛

𝑖=0

 

It is very nearly the solution of the min max problem where  

max
−1<𝑥<1

|𝑓(𝑥) − ∑ 𝐶𝑖𝑥𝑖

𝑛

𝑖=0

| = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

So, to obtain the approximate polynomial of 𝑃𝑛(𝑥), we follow certain steps like, we transform 

the interval [𝑎, 𝑏] to [-1,1] and then using linear transformation like 

𝑥 =
[(𝑏 − 𝑎)𝑡 + (𝑏 + 𝑎)]

2
 

and then obtain a new function 𝑓(𝑡) on (-1,1). Then obtain the power series solution for 𝑓(𝑡) 

and then we can write each term. 

395



(Refer Slide Time: 28:54) 

 

Like,  

𝑓(𝑡) = ∑ 𝐶𝑖𝑇𝑖(𝑡)

∞

𝑖=1

 

and the partial sum like  

𝑃𝑛(𝑡) = ∑ 𝐶𝑖𝑇𝑖(𝑡)

𝑛

𝑖=0

 

and then the good uniform approximation of 𝑓(𝑡) is, in the sense like 

max
−1≤𝑖≤1

|𝑓(𝑡) − 𝑃𝑛(𝑡)| ≤ |𝐶𝑛+1| + |𝐶𝑛+2| + ⋯ ≤ 𝜖 

So, this is how the Chebyshev polynomial approximation can be obtained. So, you can see 

there are different interpolation function and how the approximation is done. 

 

And these are useful for different applications. And user has to decide which is best suited for 

this particular approximation. So, we will stop the discussion here and continue with the other 

discussion in the next session. 
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