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Numerical Analysis 

 

So, let us continue the discussion on this numerical analysis part. So, far we have looked at the 

finding of the roots for polynomials and the equations. And then we have also looked at the 

different methods that how we can solve, Ax = b system where direct method or iterative 

method. Now, we know the linear system that comes as an output of your physical system 

which is represented through some set of governing equations which are ODEs or PDEs and 

that lead to Ax = b system. 

 

So, before we talk about the ODE and solution and such things like that, what we would like 

to do? We would like to talk something about interpolations and approximation. So, let us talk 

on that thing and then before we move to the ODE analysis. 

(Refer Slide Time: 01:16) 

 

So, what we are going to look at now, we are going to look at some interpolation and 

approximation techniques which means that, the ways that, how we can interpolate a particular 

function and then what are the approximation that we use which will lead to some. So, 

essentially these are connected with some kind of error and other issues which would be kind 

of interesting to know, for someone who is doing a numerical analysis. 
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Now, let us say we have a function 𝑓(𝑥) which is the continuous derivative up to and including, 

let us say, up to (n + 1)th order. So, then we can write this Taylor series formula for a particular 

point around 𝑥 = 𝑥0 which belongs to an interval and which can be written which we have 

already seen, how we write a Taylor series expansion and like that and so on. 

𝑓(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) + ⋯ 

 And the remainder of that thing would be  

𝑅𝑛+1(𝑥) =
(𝑥 − 𝑥0)𝑛+1

(𝑛 + 1)!
𝑓(𝑛+1)(𝜉) 

where 𝑥0 < 𝜉 < 𝑥. 

 

So, now, here this particular function, let us say one where neglecting the 𝑅𝑛+1(𝑥), so, here we 

can have 𝑅𝑛+1(𝑥). So, 𝑅𝑛+1(𝑥), if we neglect that, we can basically, the rest of the term up to 

this we get a polynomial of degree n which is nothing but  

𝑃(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) + ⋯ +
(𝑥 − 𝑥0)𝑛

𝑛!
𝑓𝑛(𝑥0) 

so, this is a polynomial with degree n. 

 

Now, the polynomial maybe interpolating polynomial which is satisfying (n + 1) conditions 

like 

𝑓(𝑖)(𝑥0) = 𝑃(𝑖)(𝑥0) 

where i goes from 0, 1 to n which are called the interpolating conditions. Now, let us say these 

are, this could be equation 2 then these are polynomial could be equation 3 then this is equation 

4. Now, this condition in 4 may be replaced by some more generic conditions as the values of 

𝑃(𝑥) and certain other derivatives coincide with the corresponding values of a 𝑓(𝑥) within the 

some sort of a interval. 

(Refer Slide Time: 04:16) 
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In general, the deviation of the remainder due to the replacement of function 𝑓(𝑥) by another 

function 𝑃(𝑥) may be written as, 𝐸(𝑓, 𝑥) = 𝑓(𝑥) − 𝑃(𝑥). So, this in approximation we 

measured the deviation of the given function, 𝑓(𝑥) and approximating the function 𝑃(𝑥) for 

all values of x which belongs to a and b in the interval. So, now, we can talk about some of the 

method for constructing the interpolating polynomials and approximating function for given 

function, 𝑓(𝑥). 

 

Now, one thing is that which can be used as an obviously that Taylor series interpolation which 

is there. So, which again like the polynomial 𝑃(𝑥) is written in Taylor series expansion and for 

the function 𝑓(𝑥) about a point 𝑥0 where 𝑥0 belongs to a and b then, the polynomial can be 

written as  

𝑃(𝑥) = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓′(𝑥0) + ⋯ +
1

𝑛!
(𝑥 − 𝑥0)𝑛𝑓(𝑛)(𝑥0) 

Now, the 𝑃(𝑥) may be regarded as an interpolating polynomial of degree n. So, this is the sort 

of interpolating polynomial of degree n and satisfying the condition that  

𝑃(𝑘)(𝑥0) = 𝑓(𝑘)(𝑥0) 

where, K goes from 0 to n and the term which is remainder 

𝑅𝑛+1(𝑥) =
1

(𝑛 + 1)!
(𝑥 − 𝑥0)𝑛+1𝑓(𝑛+1)(𝜉) 

where 𝑥0 < 𝜉 < 𝑥. So, which usually has been neglected in the Taylor series is called the 

remainder of the truncation error. 
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So, this term actually lead to the truncation error. So, this already we have talked about while 

talking about the error of the numerical methods and all these. So, the number of the terms 

included in the Taylor series expression may be determined by the acceptable error. 

(Refer Slide Time: 06:50) 

 

And in this error, epsilon which is a small number greater than 0 and the series is truncated at 

the time 𝑓(𝑛)(𝑥0) then we can say that  

1

(𝑛 + 1)!
|𝑥 − 𝑥0|𝑛+1|𝑓(𝑛+1)(𝜉)| ≤ 𝜖 

or one can say that  

1

(𝑛 + 1)!
|𝑥 − 𝑥0|𝑛+1𝑀𝑛+1 ≤ 𝜖 

where this guy 𝑀𝑛+1 = max
𝑎≤𝑥≤𝑏

|𝑓(𝑛+1)(𝑥)|. So, assume that the value of in 𝑀𝑛+1 or its estimate 

is available for a given epsilon. we can determine n and if n and x are prescribed, we can 

determine epsilon. 

 

When both n and epsilon are given, we can find the upper bound on (𝑥 − 𝑥0) that is what it 

will give an interval about 𝑥0, in which this Taylors polynomial approximate affects to the 

prescribed activities. So, depending on what is available we can do that. Now, the other one 

which would be interesting to look at is that Lagrange interpolation and Lagrange and Newton 

interpolations. 
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So, given a value of a function 𝑓(𝑥) at (n + 1) distinct point like, 𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, such that 

𝑥0 <  𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. We can determine a unique polynomial 𝑃(𝑥) of degree n which 

satisfy a condition like  

𝑃(𝑥𝑖) = 𝑓(𝑥𝑖) 

where i goes from 0, 1 to n. 

(Refer Slide Time: 08:56) 

 

Now when we talk about Lagrange polynomial, a Lagrange interpolation, so what we are going 

to say that the maximum degree of the polynomial, satisfying the n plus, let us say, this is 6, 

satisfying the conditions in equation 6 will be n. So, we assume the polynomial 𝑃(𝑥) is in the 

form  

𝑃(𝑥) = 𝑙0(𝑥)𝑓(𝑥0) + 𝑙1(𝑥)𝑓(𝑥1) + ⋯ + 𝑙𝑛(𝑥)𝑓(𝑥𝑛) 

where 𝑙𝑖(𝑥), which lies 0 ≤ 𝑖 ≤ 𝑛, are polynomial of degree n, so, this is 7. 

 

So, the polynomial which is given in equation 7 will satisfy the interpolating conditions of 

equation 6 here and so, if and only if 𝑙𝑖(𝑥𝑗) is 0 for 𝑖 ≠ 𝑗 and 1 for 𝑖 = 𝑗, so this is the situation. 

Now, the polynomial 𝑙𝑖(𝑥) satisfying the conditions at equation 8, also can be written as 

𝑙𝑖(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛)

(𝑥𝑖 − 𝑥0)(𝑥𝑖 − 𝑥1) … (𝑥𝑖 − 𝑥𝑛)
 

which is 9 or one can say  

𝑙𝑖(𝑥) =
𝜔(𝑥)

(𝑥 − 𝑥𝑖)𝜔′(𝑥𝑖)
 

where, 𝜔(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛). 
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Now, the function 𝑙𝑖(𝑥) where i goes from 0 to n are called the Lagrange fundamental 

polynomial. So, this 𝑙𝑖(𝑥) is called the Lagrange fundamental polynomial. So, what we get 

here, this one in the equation 7 this 𝑃(𝑥), this is called a Lagrange interpolation polynomial. 

(Refer Slide Time: 11:55) 

 

So, in equation 7 that is Lagrange interpolation polynomial, so, the truncation error in the 

Lagrange interpolation is given as 𝐸𝑛(𝑓, 𝑥) = 𝑓(𝑥) − 𝑃(𝑥), since 𝐸𝑛(𝑓, 𝑥) = 0 at 𝑥 = 𝜉 where 

i goes from 0 to n and x belongs to a and b. So, we can define a function 𝑔(𝑡). 

 

Now when we apply the Rolle’s theorem repeatedly, we can obtain that 𝑔(𝑛+1)(𝜉) = 0 where 

𝜉 is some points as that,  

min(𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, 𝑥) < 𝜉 < max(𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, 𝑥) 

Now, if we differentiate 𝑔(𝑡), (n + 1) times with respect to t, what we can write is that  

𝑔(𝑛+1)(𝑡) = 𝑓(𝑛+1)(𝑡) −
(𝑛 + 1)! [𝑓(𝑥) − 𝑃(𝑥)]

(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛)
 

and one we can set  

𝑔(𝑛+1)(𝜉) = 0 

then we can solve for  

𝑓(𝑥) = 𝑃(𝑥) +
𝜔(𝑥)

(𝑛 + 1)!
𝑓(𝑛+1)(𝜉) 

So, the truncation error in Lagrange interpolation is given as 

𝐸𝑛(𝑓, 𝑥) =
𝜔(𝑥)

(𝑛 + 1)!
𝑓(𝑛+1)(𝜉) 

for  
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min(𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, 𝑥) < 𝜉 < max(𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛, 𝑥) 

So, this is what we get as a truncation error in the Lagrange interpolation. Now, similarly, what 

we can get in that? 

(Refer Slide Time: 15:54) 

 

Like iterated interpolation also we can see what is that, iterated interpolation what is essentially 

the iterated form of the Lagrange polynomial and one can write 

𝐼0,1,2,…,𝑛(𝑥) =
1

𝑥𝑛 − 𝑥𝑛−1
|
𝐼0,1,2,…,𝑛−1(𝑥) 𝑥𝑛−1 − 𝑥𝑛

𝐼0,1,2,…,𝑛(𝑥) 𝑥𝑛 − 𝑥
| 

The interpolating polynomials appearing on this equation, particular equation here are any 2 

independent (n – 1) degree polynomial which could be constructed in number of ways. 

 

So that is where we can get, I mean like in Aitken method, we construct the successive iterated 

polynomials like in Aitken method. So, interpolation is identical with the Lagrange 

interpolation polynomial, but it is much simpler to construct. 

(Refer Slide Time: 18:16) 
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Now, we can also write or look at like, Newton divided difference interpolation. So, an 

interpolation polynomial which is satisfying the condition which is given in equation 6 here, 

one can write like  

𝑃(𝑥) = 𝑓[𝑥0] + (𝑥 − 𝑥0)𝑓[𝑥0, 𝑥1] + ⋯ + (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1)𝑓[𝑥0, 𝑥1, . . 𝑥𝑛] 

where  

𝑓[𝑥0] = 𝑓(𝑥0) 

𝑓[𝑥0, 𝑥1] =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
 

𝑓[𝑥0, 𝑥1, 𝑥2] =
𝑓(𝑥1, 𝑥2) − 𝑓(𝑥0, 𝑥1)

𝑥2 − 𝑥0
 

𝑓[𝑥0, 𝑥1, 𝑥2, … 𝑥𝑘] =
𝑓(𝑥1, 𝑥2, … 𝑥𝑘) − 𝑓(𝑥0, 𝑥1, 𝑥2, … 𝑥𝑘)

𝑥𝑘 − 𝑥0
 

So, these are the 0th, first, second and sort of Kth order divided differences which are written 

in this. The polynomial given here is called the Newton divided difference interpolation 

polynomial and the function effects can be written as  

𝑓(𝑥) = 𝑃(𝑥) + 𝑅𝑛+1(𝑥) 

and 𝑅𝑛+1(𝑥) is the remainder which is there. Since 𝑃(𝑥) is a polynomial of degree n which 

satisfy the condition like  

𝑓(𝑥𝑘) = 𝑃(𝑥𝑘) 

for K = 0 to n, the reminder 𝑅𝑛+1 vanishes at x = K. 
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So, now, one can note that the interpolation polynomial which is satisfying the condition given 

in equation 6 earlier, is unique and the polynomial. Therefore, what we can do the given this 

polynomial px here, must be identical with the Lagrange interpolation polynomial. 

(Refer Slide Time: 21:25) 

 

So, we can write this reminder as  

𝑅𝑛+1 =
𝑓(𝑛+1)(𝜉)

(𝑛 + 1)!
𝜔(𝑥) 

So, when a data item is added at the beginning and the end of the tabular data and if it is possible 

to derive an interpolating polynomial by adding one more term to the previously calculated 

interpolating polynomial then, such an interpolating polynomial is a process performance 

property. Obviously, Lagrange interpolating polynomial does not possess this property. 

Interpolating polynomial based on divided differences has the performance property. 

 

If one more data item, let us say (𝑥𝑛+1, 𝑓𝑛+1) is added to the given data of (𝑥𝑖, 𝑓𝑖) where i goes 

from 0 to n then in case of Newton's divided difference formula, we need to add a term 

(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛)𝑓[𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛+1]. So, this will be added to the previously nth 

degree interpolation polynomial. Now, we can move to some like, Gregory Newton 

interpolation, so assume that the tabular points, let us say, 𝑥0, 𝑥1, 𝑥2, … 𝑥𝑛 are equally spaced 

then anytime we can write 𝑥𝑖 = 𝑥0 + 𝑖ℎ where i goes from 0 to n. The step size is h. So, given 

that step size, so, we can have these finite difference operators. 

(Refer Slide Time: 23:28) 
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So, we can define this finite difference operators like  

𝐸𝑓(𝑥𝑖) = 𝑓(𝑥𝑖 + ℎ) 

this is the shift operator then 

∆𝑓(𝑥𝑖) = 𝑓(𝑥𝑖 + ℎ) − 𝑓(𝑥𝑖) 

this is the forward difference operator 

∇𝑓(𝑥𝑖) = 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − ℎ) 

this is a backward difference operator. Then we can write  

𝛿𝑓(𝑥𝑖) = 𝑓 (𝑥𝑖 +
ℎ

2
) − 𝑓 (𝑥𝑖 −

ℎ

2
) 

this is a central difference operator and  

𝜇𝑓(𝑥𝑖) =
1

2
[𝑓 (𝑥𝑖 +

ℎ

2
) − 𝑓 (𝑥𝑖 −

ℎ

2
)] 

this is the averaging operator. 

 

So, the repeated application of the difference operator if you can get the higher order 

differences like, similarly one can write  

𝐸𝑛𝑓(𝑥𝑖) = 𝑓(𝑥𝑖 + 𝑛ℎ) 

∆𝑛𝑓(𝑥𝑖) = ∑(−1)𝑘

𝑛

𝑘=0

𝑛!

(𝑛 − 𝑘)! 𝑘!
𝑓𝑖+𝑛−𝑘 

 

then you have 

∇𝑛𝑓(𝑥𝑖) = ∑(−1)𝑘

𝑛

𝑘=0

𝑛!

(𝑛 − 𝑘)! 𝑘!
𝑓𝑖−𝑘 
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And  

𝛿𝑛𝑓(𝑥𝑖) = ∑(−1)𝑘

𝑛

𝑘=0

𝑛!

(𝑛 − 𝑘)! 𝑘!
𝑓

𝑖+
𝑛
2

−𝑘
 

where 𝑓𝑖 = 𝑓(𝑥𝑖). Now, you can also write some other intermediate these things also. 
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Now, write Gregory Newton forward difference interpolation, so the repeated divided 

interpolation that we had, we can replace that with the forward differences. So, similarly, this 

is forward and if you write the same thing with the backward then one can write for backward 

differencing. 

 

And that case the error would be in the backward case the error would be,  

𝐸𝑛(𝑓; 𝑥) = (−1)𝑛−1 (
−𝑠

𝑛 + 1
) ℎ𝑛+1𝑓(𝑛+1)(𝜉) 

So, this would be the error for the backward case. Now, we can also look at Hermite 

interpolation. 

 

We can determine the unique polynomial of degree which is less than (2 n + 1) which satisfied 

that 𝑃(𝑥𝑖) = 𝑓𝑖 and 𝑃′(𝑥𝑖) = 𝑓′𝑖 where i goes from 0 to n. So, the required polynomial is 

written as  

𝑃(𝑥) = ∑ 𝐴𝑖(𝑥)

𝑛

𝑖=0

 𝑓(𝑥𝑖) + ∑ 𝐵𝑖(𝑥)

𝑛

𝑖=0

 𝑓′(𝑥𝑖) 
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Where 𝐴𝑖 , 𝐵𝑖 are polynomial of degree, so, these are polynomial of degree and (2 n + 1) which 

are given that  

𝐴𝑖(𝑥) = [1 − 2(𝑥 − 𝑥𝑖)𝑙′
𝑖(𝑥𝑖)]𝑙𝑖

2(𝑥) 

So, 𝑙𝑖(𝑥) is the Lagrange polynomial, fundamental polynomial and this case the error would 

be  

𝐸2𝑛+1(𝑓; 𝑥) =
𝜔2(𝑥)

(2𝑛 + 2)!
𝑓(2𝑛+2)(𝜉) 

This is the function 𝜉 where 𝑥0 < 𝜉 < 𝑥𝑛. So, this is how you do the Hermite polynomial. 

Now, there are other interpolation techniques also and we will stop here today and discuss the 

other interpretation technique in the next session. 
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