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Okay, so let us continue the discussion on the PDE. So now we have looked at the 

different ways to solve this PDEs. Now we are looking at, going to look at the 

uniqueness of the diffusion equation and the other thing. 

(Refer Slide Time: 00:32) 

 

So now when you go to the uniqueness, so what we have already seen the solution and 

all these, like the solution that we have obtained for this kind of initial value problem. 

So, these are I mean there are general solution for the equation in which let us say for 

this initial value problem, there is an initial condition which is f, so f it is square and 

integrable then this should satisfy that 

∫ |𝑓(𝑥)|2
∞

−∞

𝑑𝑥 < ∞ 

So that is what it is supposed to do. Now before we establish that any solution in the 

initial value problem satisfy these things so we need to have certain information or 

properties or propositions on this. So, like propositions let us say we had 4, now 5. We 

say let f is a function continuous and satisfying this f is continuous and satisfies  

∫ |𝑓(𝑥)|2
∞

−∞

𝑑𝑥 < ∞ 
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That is, so we can put you 

𝑢(𝑥, 𝑡) = ∫ 𝑝(𝑥 − 𝑦, 𝑡)
∞

−∞

𝑓(𝑦)𝑑𝑦 

for x belongs to R and t greater than 0. Then what we have  

∫ |𝑢(𝑥, 𝑡)|2
∞

−∞

𝑑𝑥 < ∞ 

for all t greater than 0 and  

∫ |
𝜕𝑢

𝜕𝑥
(𝑥, 𝑡)|

2∞

−∞

𝑑𝑥 < ∞ 

for all t greater than 0. 

 

So again, one can look at this proof in a textbook, but we will continue with the some 

of the other properties like let f is continuous and satisfies this and this particular 

equation. Then v be any solution of the problem where we define  

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
 

for x belongs to R the initial values are  

𝑢(𝑥, 0) = 𝑓(𝑥) 

for x belongs to R. And we have other two condition also here. 

(Refer Slide Time: 04:12) 

 

Then what we can have, then we have  

∫ |𝑣(𝑥, 𝑡)|2
∞

−∞

𝑑𝑥 ≤ ∫ |𝑓(𝑥)|2
∞

−∞

𝑑𝑥 

247



So, this is again like so if you have a solution and then like this, so this again one can 

prove this. So similarly, we can say that let f is continuous and satisfying that equation 

then the problem that which is defined here, let us say A. Then the problem which is 

defined in A has at most one solution. 

 

So, this is another important information and again this is another theory which one can 

prove it. Like now we can solve or solving the Dirichlet problem in the unit disk, okay. 

So, like let us say we have an  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

in 𝐷1, this is a two dimensional Laplacian and  

𝑢(𝑥, 𝑦) = ℎ(𝑥, 𝑦) 

for x and y belongs to 𝜕𝐷1. Now what is that? This is x, this is y, this is 𝜕𝐷1 and this is 

𝐷1. 

 

So, this is a unique disk in R2. So,  

𝐷1 = {(𝑥, 𝑦)𝜖𝑅2, |𝑥2 + 𝑦2| < 1} 

So, this is called the unit disk in R2. And h is given a function that is continuous in a 

neighborhood at the unit circle 𝜕𝐷1. Thus, we would like to find a solution u that is 

harmonic in 𝐷1 that takes the values given in this. 

 

So now first by looking at this radial symmetry of the domain we can probably express 

this in polar coordinates (𝑟, 𝜃). Then once we define that 𝑟 𝑎𝑛𝑑  𝜃 then we can use the 

separation of variable and then we can look at the eigenvalue or eigenfunction and then 

try to find out the solution. 

(Refer Slide Time: 07:48) 
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Now first look at the separation of variables. So, by looking at the symmetry of the 

domain, so we said that  

𝑥 = 𝑟 cos 𝜃 

𝑦 = 𝑟 sin 𝜃 

in polar coordinate. So now we exploit the linearity of the PDE and the boundary 

conditions given in this particular problem, let us say A1 given in the problem A1 we 

superposing simple solution of the problem. 

 

The strategy here is to first find a special class of function 𝑟 𝑎𝑛𝑑  𝜃 and then find the 

solution. So, we start with the boundary value problem which is given in A1 and 

rewriting in 𝑟 𝑎𝑛𝑑  𝜃, what we get is 

𝜕2𝑣

𝜕𝑟2
+

1

𝑟

𝜕𝑣

𝜕𝑟
+

1

𝑟2

𝜕2𝑣

𝜕𝜃2
= 0 

Where 𝑟 > 0, −𝜋 < 𝜃 < 𝜋. 

 

And 

𝑣(1, 𝜃) = ℎ(cos 𝜃 , sin 𝜃) 

where 𝜃 again going. So, where we have set  

𝑣(𝑟, 𝜃) = ℎ(𝑟 cos 𝜃 , 𝑟 sin 𝜃) 

Now here this  

ℎ(cos 𝜃 , sin 𝜃) ≡ 𝑔(𝜃) 

So, then what we will write this equation is that  
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𝜕2𝑣

𝜕𝑟2
+

1

𝑟

𝜕𝑣

𝜕𝑟
+

1

𝑟2

𝜕2𝑣

𝜕𝜃2
= 0 

And  

𝑣(1, 𝜃) = 𝑔(𝜃) 

And all the conditions here they will remain there. Now f is a continuous function, then 

how we can partial derivative that we will write; 

𝜕𝑣

𝜕𝑟
(𝑟, 𝜃) = 𝑓′(𝑟)𝑧(𝜃) 

where r greater than 0 and −𝜋 < 𝜃 < 𝜋. So,  

𝜕2𝑣

𝜕𝑟2
= 𝑓′′(𝑟)𝑧(𝜃) 

for the same condition. And  

𝜕2𝑣

𝜕𝜃2
= 𝑓(𝑟)𝑧′′(𝜃) 

in this given condition. 

(Refer Slide Time: 11:21) 

 

Now once we replace back in this 𝑟, 𝜃 system what we get 

𝑓′′(𝑟)𝑧(𝜃) +
1

𝑟
 𝑓′(𝑟)𝑧(𝜃) +

1

𝑟2
𝑓(𝑟)𝑧′′(𝜃) = 0 

where r is greater than 0 and −𝜋 < 𝜃 < 𝜋. So now assuming 𝑣(𝑟, 𝜃) is a nonzero for 

all values of 𝑟 𝑎𝑛𝑑  𝜃. So, then we divide by both side by that and what we get that 

𝑓′′(𝑟)

𝑓(𝑟)
+

1

𝑟

𝑓′(𝑟)

𝑓(𝑟)
+

1

𝑟2

𝑧′′(𝜃)

𝑧(𝜃)
= 0 
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Now this is the condition for which this is valid. Now here if we multiply both side by 

𝑟2 we notice that the equation can be written in such a way that the functions that 

depends only r on one side and the other side on theta. For example, if we multiply this 

by 𝑟2 we get 

𝑟2
𝑓′′(𝑟)

𝑓(𝑟)
+ 𝑟

𝑓′(𝑟)

𝑓(𝑟)
= −

𝑧′′(𝜃)

𝑧(𝜃)
= λ 

So here we have got everything separated. 

 

Now that we got two differential equations, which lead to  

−𝑧′′(𝜃) = λ 𝑧(𝜃) 

for theta between −𝜋 < 𝜃 < 𝜋 and we got  

𝑟2𝑓′′(𝑟) + 𝑟𝑓′(𝑟) = λ 𝑓(𝑟) 

where r greater than 0. Now we can have a requirement for the function g which is 

periodic of with the period 2𝜋 yields that  

𝑧(−𝜋) = 𝑧(𝜋) 

and  

𝑧′(−𝜋) = 𝑧′(𝜋) 

So, in other words, now if I put everything this two-point boundary value problem, 

which becomes like 

−𝑧′′(𝜃) = λ 𝑧(𝜃) 

𝑧(−𝜋) = 𝑧(𝜋) 

𝑧′(−𝜋) = 𝑧′(𝜋) 

 where theta goes between −𝜋 < 𝜃 < 𝜋. So, this is what we get. 

(Refer Slide Time: 14:33) 
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Now we have an, we can have an eigenvalue problem. So, like we can see that function 

𝑧(𝜃) = 0 for all values of 𝜃. So, and when it solves, we get and refer to the solution is 

a trivial solution. But we are interested for the non-trivial solution and the special 

solution for this boundary value problem. So, we can see that this non-trivial solution 

depends on the value of lambda of the ODE. 

 

So, there is certain values of lambda for which has a non-trivial solution but the rest 

this boundary value problem will have trivial solution. So now the value of lambda for 

which this two-point boundary value problem which has non-trivial solutions, so that 

would call the so that say for values of lambda provide non-trivial solution are called 

the eigenvalues and corresponding function will be eigenfunction. 

 

So now this again one can see this proof and all these that this is possible and like if we 

let us say, assuming that two points has a non-trivial solution, then lambda has to be so, 

if we assume this boundary value problem has non trivial solution, then lambda has to 

be 0. So that is an interesting. Now how to find out the solution basically, that lambda 

0 now we have this equation. 

 

So, we get 𝑧′′(𝜃) = 0, which is a general solution is that  

𝑧(𝜃) = 𝐶1𝜃 + 𝐶2 

Now if we apply the boundary condition, So, this is a solution that we have for all theta 

which is non-trivial solution. 
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And that is 𝜆 = 0 is an eigenvalue. Now this one we can say that 𝜆0 = 0. So, we pick 

the special eigenfunction that is ϕ0(𝜃) = 1 for all theta. So,  

z0(𝜃) = 𝑎0 

for all theta. Now since 𝜆0 = 0. Now we can look for the positive eigenvalues of this 

solution where 𝜆 > 0, then the general solution would be in the form of  

𝑧(𝜃) = 𝐶1 cos √𝜆𝜃 + 𝐶2 sin √𝜆𝜃 

So that is also for all theta that we have. So, we have  

𝑧′(𝜃) = −𝐶1√𝜆 cos √𝜆𝜃 + 𝐶2√𝜆 sin √𝜆𝜃 

(Refer Slide Time: 18:37) 

 

Now once we put this with the boundary condition, so if we use the boundary 

conditions, we get  

𝐶1 cos(−√𝜆𝜋) + 𝐶2 sin(−√𝜆𝜋) = 𝐶1 cos(√𝜆𝜋) + 𝐶2 sin(√𝜆𝜋) 

And second one 

−𝐶1√𝜆 cos(−√𝜆𝜋) + 𝐶2√𝜆 sin(−√𝜆𝜋) = −𝐶1√𝜆 sin(√𝜆𝜋) + 𝐶2√𝜆 cos(√𝜆𝜋) 

So here we can divide. So, what we get from here that 

2𝐶2 sin(√𝜆𝜋) = 0 

and  

2𝐶1√𝜆 sin(√𝜆𝜋) = 0 

So, essentially sin(√𝜆𝜋) = 0. So,  

√𝜆𝜋 = 𝑛𝜋 

So, 
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𝜆 = 𝑛2 

for n equals to 1, 2, 3 and so on. So, the eigenvalues would be given as this. So, the 

positive eigenvalues are. So essentially, we can say that 𝜆𝑛 = 𝑛2. 

 

So,  

𝑧𝑛(𝜃) = 𝑎𝑛𝑐𝑜𝑠 (𝑛𝜃) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝜃) 

for n equals to 1, 2, 3 and so on. Now if we put these things together in the, then we say 

that all these eigenvalues and eigenfunction for this two-point boundary value problems 

are given by like 𝜆𝑛 = 𝑛2. 

 

And the corresponding eigenfunction z0(𝜃) = 𝑎0 and 𝑧𝑛(𝜃) is given by like this  

𝑧𝑛(𝜃) = 𝑎𝑛𝑐𝑜𝑠 (𝑛𝜃) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝜃) 

where 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 for corresponding. So now we have another radial component of that 

boundary value problem which is like 

𝑟2𝑓′′(𝑟) + 𝑟𝑓′(𝑟) = 𝑛2 𝑓(𝑟) 

 for r greater than 0. So, for case n equals to 0, the equation becomes  

𝑟𝑓′′(𝑟) + 𝑓′(𝑟) = 0 

for r greater than 0. 

 

So, from here what we get  

𝑓′(𝑟) =
𝐶1

𝑟
 

And  

𝑓(𝑟) = 𝐶1 ln 𝑟 + 𝐶2 

where r greater than 0. Now 𝐶1 and 𝐶2 are the constants and 𝐶1 ≠ 0.  

(Refer Slide Time: 22:01) 
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So, we are looking for a C2 function defined on the closer unit disk D1, so we must set 

𝐶1 = 0. So, the equivalent proposition is that lim
𝑟→0+

𝑓(𝑟) exist and for 𝑛 = 0, the 𝑓(𝑟) 

constant. So now for some constant 𝑐 = 1 if you take for 𝑛 = 0, taking 𝑐 = 1, which 

will give  

𝑓0(𝑟) = 1 

for all r. Now we can consider other cases where n greater than equals to 1. 

 

So that differential equation becomes  

𝑟2𝑓′′(𝑟) + 𝑟𝑓′(𝑟) − 𝑛2 𝑓(𝑟) = 0 

So here we can use  

𝑓(𝑟) = 𝑟𝑞 

So, this is an again second order ODE. So, after doing all these, what we will get is that 

𝑞 = ±𝑛. So, it will have that 

𝑓−𝑛(𝑟) = 𝑟−𝑛 

And 

𝑓𝑛(𝑟) = 𝑟𝑛 

for r greater than 0. So, the boundary condition if we apply, so we take this is the 

physical solution that we will have. 

 

So, we will take this as the take as solution. So finally, what we get that  

𝑣0(𝑟, 𝜃) = 𝑎0 

for all 𝑟 𝑎𝑛𝑑 𝜃;  
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𝑣𝑛(𝑟, 𝜃) = 𝑟𝑛[𝑎𝑛𝑐𝑜𝑠 (𝑛𝜃) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝜃)] 

for all r and 𝜃. And 𝑎𝑛 is for n equals to 0, 1, 2 and 𝑏𝑛 for n equals to 1, 2, 3 are the 

constants. So, this is what you get. And now surely these things can be expanded in 

terms of eigenfunction and all this. 

 

So, the other thing which would be interesting to see is that like some sort of a Poisson 

integral kernel or like so now the point here one important another thing which could 

be interesting to see is the Poisson integral representation. 

(Refer Slide Time: 24:55) 

 

 Like Poisson integral representation. So, what it says that let g, which is defined in 

−𝜋 𝑡𝑜 𝜋 be a continuous function that can be extended to a continuous 2𝜋 periodic 

function in R. We then have that 

|𝑔(𝜃)| ≤ 𝑀 

for all theta belongs to −𝜋 𝑡𝑜 𝜋, where M is some positive constant. 

 

So here the idea here is that we can use some of these properties of the Poisson kernel 

and extend this one some of these solutions with the unit disk and we can show that 

𝑢(𝑟, 𝜃) would be ∫ 𝑝(𝑟, 𝜃 − 𝜉)
𝜋

−𝜋
𝑔(𝜉)𝑑𝜉 or 𝑔(𝜃). So, this is for r greater than 0, theta 

belongs to −𝜋 𝑡𝑜 𝜋. And this is for r equals to 1 and theta belongs to −𝜋 𝑡𝑜 𝜋. So, this 

is another thing, which could be also bit of handy. 
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But we will see some examples and where the separation of variable or these things we 

can use. So, another last point which is important to note here is that we can have 

differentiation or differentiating under the integral sign. So how do we do that? 

Actually, so this is an suppose, let us say suppose H which is given like is a C1 function 

and the define is that  

ℎ(𝑥, 𝑡) = ∫ 𝐻(𝑥, 𝑡, 𝑠)
𝑡

𝑎

𝑑𝑠 

for all x belongs to R, t belongs to R. 

(Refer Slide Time: 28:28) 

 

So here we assume that the function 𝐻,
𝜕

𝜕𝑥
[𝐻(𝑥, 𝑡, 𝑠)] & 

𝜕

𝜕𝑡
[𝐻(𝑥, 𝑡, 𝑠)] are absolutely 

integrable over a and b. Then h is C1 and its partial derivative are given as 

𝜕

𝜕𝑥
[𝐻(𝑥, 𝑡)] = ∫

𝜕

𝜕𝑥
[𝐻(𝑥, 𝑡, 𝑠)]

𝑡

𝑎

𝑑𝑠 

 And what we can write  

𝜕

𝜕𝑡
[𝐻(𝑥, 𝑡)] = 𝐻(𝑥, 𝑡, 𝑡) + ∫

𝜕

𝜕𝑡
[𝐻(𝑥, 𝑡, 𝑠)]

𝑡

𝑎

𝑑𝑠 

So, this is a, this is an again a fundamental theorem of calculus. 

 

And this is a sort of a special case of, this is a special case of Leibnitz rule where you 

can have differentiation under integration. So that is pretty much sort of an conclude 

the theoretical aspect of this PDEs. Now we can see some practical examples and then 

that would give you an idea how to use all this theoretical discussion that we had so far. 

And that we will do in the next session. 
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