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Okay, so we have now looked at the ODE and just little bit of quickly we have touched 

upon some of the properties of Laplace and Fourier analysis because they are probably 

handy in solving ODEs. Now we are moving to the discussion on partial differential 

equation. 

 

So far, we have looked at Eulerian differential equation, now we are going to look at 

the partial differential equation and once we have these discussions which are 

completed then we will move to the different techniques or the numerical ways of 

solving this kind of system, so the linear system or ODEs are like that. 

(Refer Slide Time: 00:52) 

 

So how you define essentially let us say when you talk about this PDE, if you have a 

function which is 𝑢(𝑥, 𝑦) which has this partial derivative, so the basic function of the 

partial derivative which would be given as 

lim
ℎ→0

ℎ(𝑥 + ℎ, 𝑦) − ℎ(𝑥, 𝑦)

ℎ
 

which is giving you the partial derivative of x. Now typically the partial derivative 

functions which are  

𝑓(𝑥, 𝑦) = 𝐹(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑥𝑥, 𝑢𝑥𝑦, … ) 
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and so on, okay. 

 

So, this is the kind of. Now partial derivatives from the engineering problems like if 

somebody is solving solid mechanics problem, vibrational problem or fluid mechanics 

problem he will encounter these partial derivatives. Now for example if you have three-

dimensional diffusion equation which looks like  

𝜕𝑢

𝜕𝑡
= 𝐷 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) 

So, this is 3D differential equation. Then you can have 2D Laplace equation which is  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

Then one can have 1D wave equation, which is again  

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
 

So, all these or one can have minimal surface equation which is  

(1 + 𝑢𝑦
2)𝑢𝑥𝑥 − 2𝑢𝑥𝑢𝑦𝑢𝑥𝑦 + (1 + 𝑢𝑥

2)𝑢𝑦𝑦 = 0 

okay. Or some other function like some other functions which are let us say  

𝑢𝑥 + (1 + 𝑥)𝑢𝑦 = (1 + 𝑥 + 𝑦)𝑢2 

Or one can have  

(𝑥 + 1)𝑢𝑥 + 𝑦𝑢𝑦 = 2𝑥 + 𝑒𝑥 

something like that. So, this set of again these equations what you look at here now they 

are going to be kind of these are linear system. These guys are all nonlinear partial 

differential equation. So again, like the Eulerian differential equation here also you have 

linear and nonlinear system. 

(Refer Slide Time: 04:24) 
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And typically, I mean a system in general class of equation one can write that  

𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑥𝑦 + 𝑐𝑢𝑦𝑦 = 𝑑 

This is a second order system. a, b, c, d are the basically some functions, continuous 

functions for variables and if these are depending on x and y only then these guys would 

become a linear second order system, which is  

𝑎(𝑥, 𝑦)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑥𝑦 + 𝑐(𝑥, 𝑦)𝑢𝑦𝑦 = 𝑑(𝑥, 𝑦) 

This is linear second order PDE. Now the here coefficients here do not depend on the 

derivatives u. So, you obtain a quasilinear second order PDE. And then from that we 

can characterize these things. And now in general a linear PDE which can be expressed 

in a form 𝐿𝑢 = 𝑓 where 𝐿 is u tend to F is a linear differential operator for a linear 

space. Now u of differential function of linear space. F is a continuation. 

 

So, for example, one can say −∆𝑢 = 𝑓 where in R where L equals to −∆ which is a 

linear operator and if this is Lu equals to 0 this becomes the homogeneous linear system. 

So, this kind of system one can solve, which is very useful property nodes in the 

principle of superposition and we can solve like that. So there, what is the theorem 

there? 

 

The theorem is that let u and v denote two solutions of a homogeneous PDE of kind 

𝐿𝑢 = 0. Then the any constant 𝑐1 and 𝑐2, 𝑐1𝑢 + 𝑐2𝑣 is also a solution. So that means  

𝐿[𝑐1𝑢 + 𝑐2𝑣] = 𝑐1𝐿𝑢 + 𝑐2𝐿𝑣 

So, this also  
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𝑐10 + 𝑐20 = 0 

So that means, this linear combination is also a solution to this particular PDE. 

(Refer Slide Time: 07:27) 

 

Now once you look at this particular curve, I mean like we have this in general we can 

write  

𝑎(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦)𝑢𝑥𝑦 + 𝑐(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)𝑢𝑦𝑦 = 𝑑 

Now we can begin with a special case of the linear system. So, the linear system can be 

written as that. So, this is a generic general system. Now the linear system we can write  

𝑎(𝑥, 𝑦)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑥𝑦 + 𝑐(𝑥, 𝑦)𝑢𝑦𝑦 = 𝑑(𝑥, 𝑦) 

Now here a, b, c, d are continuous function defined on some interval R. Now the 

classification of this equations which are defined here based on the properties of the 

curve one R which is associated with this curve called the characteristics curve. Now 

we begin with a let us say the characteristics curve on 𝛾.Now we begin with a curve in 

this is in R, so this is also in R parameters by a map. 

 

So,  

𝛾(𝑡) = 𝑥(𝑡)𝑦(𝑡) 

for t belongs to I.  Now I is some interval in real numbers like as shown here. So, 

suppose we are trying to solve this PDE linear one on this curve gamma specifically 

suppose we have given values of u and then, so we can specify these conditions on u 

like 

𝑢(𝑥(𝑡)𝑦(𝑡)) = 𝑢0(𝑡) 
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for t belongs to I. You can have  

𝑢𝑥(𝑥(𝑡)𝑦(𝑡)) = 𝑓(𝑡) 

That is also for t belongs to I and we have  

𝑢𝑦(𝑥(𝑡)𝑦(𝑡)) = 𝑔(𝑡) 

 for I belongs to I. So here 𝑓, 𝑔 are given continuous function on I. So, if we assume in 

addition that 𝑓, 𝑔 are 𝑐∞ functions we can also obtain the c infinity function then we 

can obtain the second derivative like 𝑢𝑥𝑥, 𝑢𝑥𝑦 and 𝑢𝑦𝑦 and like that on this 𝛾. So now 

we can attempt to construct a solution for this particular system here. 

(Refer Slide Time: 11:00) 

 

Now we will write like the first step in this construction taking the derivative and once 

we do that what we get  

𝑥̇𝑢𝑥𝑥 + 𝑦̇𝑢𝑥𝑦 = 𝑓̇ 

Then we have 

𝑥̇𝑢𝑥𝑦 + 𝑦̇𝑢𝑦𝑦 = 𝑔̇ 

𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑥𝑦 + 𝑐𝑢𝑦𝑦 = 𝑑 

So here the unknowns are 𝑢𝑥𝑥, 𝑢𝑥𝑦, 𝑢𝑦𝑦 on this Γ. Or a dot on the top of the variable 

denotes the with respect to so here 

𝑥̇ =
𝑑𝑥

𝑑𝑡
 

Similarly, 𝑦̇, 𝑓̇, 𝑔̇ like that. 

 

So, if we construct this, this is  
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(
𝑥̇ 𝑦̇ 0
0 𝑥̇ 𝑦̇
𝑎 𝑦 𝑐

) (

𝑢𝑥𝑥

𝑢𝑥𝑦

𝑢𝑦𝑦

) = (
𝑓̇
𝑔̇
𝑑

) 

So, the matrix here can be solved for second derivative u in terms. And the determinant 

of this matrix which we can write that  

𝑎(𝑦̇)2 − 𝑏𝑥̇𝑦̇ + 𝑐(𝑥̇)2 = 0 

So now what we can write that since 

𝑦̇

𝑥̇
=

𝑑𝑦

𝑑𝑥
 

we write  

𝑎 (
𝑑𝑦

𝑑𝑥
)

2

− 𝑏 (
𝑑𝑦

𝑑𝑥
) + 𝑐 = 0 

So, the assuming 𝑎 ≠ 0 on R or in R and we can solve for 

𝑑𝑦

𝑑𝑥
=

𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

(Refer Slide Time: 13:13) 

 

So, the possibilities are for this discriminant if 𝑏2 − 4𝑎𝑐 greater than 0, then that PDE 

would be hyperbolic is nature if 𝑏2 − 4𝑎𝑐 equals to 0, then this is a parabolic system. 

And if 𝑏2 − 4𝑎𝑐 less than 0, this is an elliptic system, okay. So, we can see this taking 

the original wave equation, one dimensional wave equation, which is c square. 

 

So 1D wave equation;  

𝑐2𝑢𝑥𝑥 − 𝑢𝑡𝑡 = 0 
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So here the describing small amplitude vibration of a string now 𝑎 = 𝑐2 b is 0 and c is 

-1 in this case. So, you can see 𝑏2 − 4𝑎𝑐 here greater than 0. So, this is hyperbolic 

system. So, in this PDE the equation for the characteristics curve would be  

𝑑𝑡

𝑑𝑥
= ±

2𝑐

2𝑐2
= ±

1

𝑐
 

So, which one can write that  

𝑑𝑥

𝑑𝑡
= ±𝑐 

So, the solution to this particular, there would be a solution, one solution would be 

𝑥 = 𝑐𝑡 + ξ 

 Another would be  

𝑥 = 𝑐𝑡 + η 

ξ and η these two guys are here are the parameters for each of the families of 

characteristics curve, which is given through the solution. 

 

So, if you look at that in a x-t plane like x and t plane, so this is how the, so 

characteristics curve of this particular hyperbolic system, they will look like in this kind 

of situation where the slope is always the slope is 1/𝑐. So, this family of characteristics 

curve described by this equation, they are parallel and the slope is 1/𝑐. So similarly, 

one can have now so this is slope is 1/𝑐. 

 

Now one can have solution of the, so this is other side of the curve where the slope is 

negative then this would go like this, where the slope is −1/𝑐. So, if you look at that, 

so that is how the system would look like. 

(Refer Slide Time: 16:41) 
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Now how would one solve the, so how these PDEs are solved? How to solve this PDEs? 

So, one best approach is that using characteristics curve like so that is probably the best 

way to get a solution for this kind of PDEs. Now we can look at this that only wave 

equation 

𝑢𝑥𝑥 −
1

𝑐2
𝑢𝑡𝑡 = 0 

for x belongs to R and t greater than 0. 

 

So, the initial value problem here, this is an 1D wave equation with initial value problem 

which is 𝑓(𝑥) for all x belongs to 0 to L. And 𝑢𝑡(𝑥, 0) = 𝑔(𝑥) for all x belong to 0 to 

L. Now f and g are given continuous functions defined in R. Now already we have seen 

this kind of system has a solution. There would be two solutions. One is 𝑐𝑡 + ξ. 

 

And another would be x is −𝑐𝑡 + η. Now the families of curve consist of parallel line 

in the x-t plane, which will have a slope 1/𝑐 and −1/𝑐. Now what we can do this by 

let us say considering this psi and eta parameter, now we set 

ξ = 𝑥 − 𝑐𝑡 

 and  

η = 𝑥 + 𝑐𝑡 

Now you now given a solution u to the PDE here what you are there we can write, we 

can change the variables by using the set of variables like  

𝑣(𝑡, η) = 𝑢(𝑥, 𝑡) 

and where x, t are obtained in terms of ξ and η. So, we will write 
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𝑥 =
η

2
+

ξ

2
 

And  

𝑡 =
η

2𝑐
−

ξ

2𝑐
 

Or alternatively one can write like 

𝑢(𝑥, 𝑡) = 𝑣(ξ, η) 

(Refer Slide Time: 19:45) 

 

So now assuming u belongs to c square solve the PDE which is given here. We would 

like to derive the PDE, satisfy this v and v will satisfy this express term in terms of 

ξ 𝑎𝑛𝑑 η. So, we will use the chain rule. So,  

𝑢𝑥 = 𝑣ξ

𝜕ξ

𝜕𝑥
+ 𝑣η

𝜕η

𝜕𝑥
  

So, 
𝜕ξ

𝜕𝑥
 is 1 and 

𝜕η

𝜕𝑥
 is also 1. So, what we get  

𝑢𝑥 = 𝑣ξ + 𝑣η 

Now we take partial derivative both side with respect to x. 

 

So, we get  

𝑢𝑥𝑥 =
𝜕

𝜕𝑥
(𝑣ξ) +

𝜕

𝜕𝑥
(𝑣η) 

So, what we get  

𝑢𝑥𝑥 = 𝑣ξξ

𝜕ξ

𝜕𝑥
+ 𝑣ξη

𝜕η

𝜕𝑥
+ 𝑣ηξ

𝜕ξ

𝜕𝑥
+ 𝑣ηη

𝜕η

𝜕𝑥
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Now already we have 
𝜕ξ

𝜕𝑥
 is 1 and 

𝜕η

𝜕𝑥
 is also 1. With that what we can write,  

𝑢𝑥𝑥 = 𝑣ξξ + 2𝑣ξη + 𝑣ηη 

So similarly, we can find out for  

𝑢𝑡 = −𝑐𝑣ξ + 𝑐𝑣η 

And 

𝑢𝑡𝑡 = 𝑐2{𝑣ξξ − 2𝑣ξη + 𝑣ηη} 

Now our original equation is  

𝑢𝑥𝑥 −
1

𝑐2
𝑢𝑡𝑡 = 0 

So, when you replace back all this here, what we get 𝑣ξη = 0. So now this particular 

equation here, this is also hyperbolic second order linear PDE, in this case 𝑎 = 𝑐 =

0and b equals to 1. So, in contrast with the hyperbolic 3D here we can so this one 

instead of that this one can be directly solved. 

(Refer Slide Time: 22:19) 

 

By writing like  

𝜕

𝜕η
(𝑣ξ) = 0 

So, 𝑣ξ = ℎ(ξ). So, what we get  

𝑣(ξ, 𝜂) = 𝐹(ξ) + 𝐺(𝜂) 

where f is antiderivative of h. So, 𝐹′ = ℎ and g is an arbitrary function, arbitrary in C2 

function. Now the v is defined here. Now f and g are arbitrary in C2 and so general 

solution we can write for one dimensional wave equation which is  
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𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 

𝑢(𝑥, 𝑡) = 𝐹(𝑥 − 𝑐𝑡) + 𝐺(𝑥 + 𝑐𝑡) 

So, this F and G are the arbitrary C2 functions of a single variable and this expression 

is known as d’Alembert’s solution to 1D wave equation. Now we can use this general 

equation to 1D wave equations and now here we can take derivative like 

𝑢𝑡(𝑥, 𝑡) = −𝑐𝐹′(𝑥 − 𝑐𝑡) + 𝑐𝐺′(𝑥 + 𝑐𝑡) 

and we can apply the general initial condition  

𝐹(𝑥) + 𝐺(𝑥) = 𝑓(𝑥) 

− 𝑐𝐹′(𝑥) + 𝑐𝐺′(𝑥) = 𝑔(𝑥) 

And we can take derivative again similarly, and write that  

− 𝐹′(𝑥) + 𝐺′(𝑥) =
𝑔(𝑥)

𝑐
 

(Refer Slide Time: 24:39) 

 

So now if we add these terms with the following, so we get  

𝐺′(𝑥) = 𝐹′(𝑥) +
𝑔(𝑥)

2𝑐
 

This is for all x belongs to R. So, integrating this equation what we get  

𝐺(𝑥) =
𝑓(𝑥)

2
+

1

2𝑐
∫ 𝑔(𝑧)𝑑𝑧

𝑥

0

+ 𝑐1 

Similarly, one can find  

𝐹(𝑥) =
𝑓(𝑥)

2
−

1

2𝑐
∫ 𝑔(𝑧)𝑑𝑧

𝑥

0

+ 𝑐2 

So, what we will have the general solution for 
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𝑢(𝑥, 𝑡) =
1

2
[𝑓(𝑥 − 𝑐𝑡) + 𝑓(𝑥 + 𝑐𝑡)] +

1

2𝑐
∫ 𝑔(𝑧)𝑑𝑧

𝑥+𝑐𝑡

𝑥−𝑐𝑡

+ 𝑐3 

Now here the 𝑐3 is another constant, which is taken as 𝑐3 = 𝑐1 + 𝑐2. So, it follows the 

first initial conditions and so again if you see this curve in x-t plane, so there would be 

slope in these directions and the reverse slope in these directions. So, there would be a 

location which one can see. This would be 𝜉, η. Let us say this is η and this would be 

x-t solution. 

 

So essentially, this is how the 1D wave equations gives a solution of in terms of two 

characteristics and the slope would go in two different directions. So, this is how one 

can look at this PDEs. So, we will continue the discussion on other type of PDEs in the 

next session. So, this is what we have looked at the hyperbolic system of the wave 

equation and where the characteristics go in two different directions with a different 

slope. So, we will continue the discussion for other PDEs in the next lecture. 
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