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So, let us continue the discussion on this matrix Eigen values and Eigen vectors and we are seeing 

how the Eigen values and Eigen vector they are important. So, you have looked at the positive 

definite matrix and also looked at an example where this is not exactly positive definite it is a 

positive semi definite matrix and there are certain properties that one has to satisfy that. So, now 

using this nice property of Eigen values and Eigen vectors you can solve some of the linear systems 

and we have looked at couple of examples like this here. 
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Now we can move to some more example like let us say one kind of you have a system 

𝑥̇ = 3𝑥 − 4𝑦 

and you have  

𝑦̇ = 2𝑥 − 3𝑦 

Where 𝑥(0) = 1, 𝑦(0) = 0. So, you can see these are ordinary differential equation that would be 

our next point of discussion that so how we can use our concept of matrix Eigen values and all 

these to solve that. So, this is our system so we can find 𝜆1, 𝜆2 then these. 

 

And this Eigen vector matrix Eigen value matrix and finally the solution would be like 

{
𝑥
𝑦} = 𝑐1𝑒

𝑡(𝑥1) + 𝑐2𝑒
−𝑡(𝑥2) 

So, now let us say A has Eigen values of 𝜆1, 𝜆2 and 𝜆𝑛 where all the 𝜆𝑖 > 0 and which is forming 

the Eigen vectors like 𝑥1, 𝑥2 and 𝑥𝑛. So, which are forming the basis for Rn and C being the co-

factor matrix. 

 

So, we can what we can find like  

(i) the trace of A inverse and determinant of A inverse.  

(ii) trace of C and determinant of C. 

 

 So, it would be quite nice to use the property like 

97



𝑡𝑟𝑎𝑐𝑒 (𝐴−1) = 𝑠𝑢𝑚 𝑜𝑓 𝜆𝑠 𝑜𝑓 (𝐴−1) = ∑
1

𝜆𝑖

𝑛

𝑖=1

 

 and  

𝑑𝑒𝑡 (𝐴−1) = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝜆𝑠 𝑜𝑓 (𝐴−1) = ∏
1

𝜆𝑖

𝑛

𝑖=1
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Now  

𝑑𝑒𝑡 (𝐴−1) ∙ 𝑡𝑟𝑎𝑐𝑒 (𝐴−1) = 𝐸𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐶𝑇     (𝑠𝑎𝑚𝑒 𝑎𝑠 𝐶) 

So, what we can say  

𝑡𝑟𝑎𝑐𝑒 (𝐶) = (𝜆1 …𝜆𝑛) (∑
1

𝜆𝑖
) 

and  

𝑑𝑒𝑡 (𝐶) = (∏
1

𝜆𝑖
)
𝑛−1

 

So, I mean you can look at multiple examples like this I mean another example one can see like 

you have a system  

𝐺𝐾+2 =
𝐺𝐾+1 + 𝐺𝐾

2
 

you have 𝐺0 = 0 and  𝐺0 =
1

2
. 
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So, we can find A and then also the limit for k tends to infinity so what it is 

[
𝐺𝐾+2

𝐺𝐾+1
] = [

0.5 0.5
1 0

] [
𝐺𝐾+1

𝐺𝐾
] 

So, 𝜆 will be 1, -1/2 so the vector would be 𝑋 = (
1
1
) , (

1
−2

). So, putting that back we get  

(
1/2
0

) = 𝐶1 (
1
1
) + 𝐶2 (

1
−2

) 

which will get us 𝐶1 = 1/3, 𝐶2 = 1/6. So, the  

[
𝐺𝐾+2

𝐺𝐾+1
] =

1

3
𝑒𝑡 (

1
1
) +

1

6
𝑒−

1
2
𝑡 (

1
−2

) 

(Refer Slide Time: 06:18) 

 

So, which one can write  

𝐺𝐾 = [
1 1
1 −2

] [
𝑒𝑡 0

0 𝑒−
1
2
𝑡
] [

1/3
1/6

] 

so, we can write  

𝐺𝐾 =

[
 
 
 (𝑒𝑡)𝐾 (𝑒−

1
2
𝑡)

𝐾

(𝑒𝑡)𝐾 (𝑒−
1
2
𝑡)

𝐾

]
 
 
 

[
1/3
1/6

] 

𝐺𝐾 =
1

3
(𝑒𝑡)𝐾 −

1

3
(𝑒−

1
2
𝑡)

𝐾

=
1

3
[1 − (−

1

2
)

𝐾

] 

now if we do that so now expanding this and get this one then we can write again  
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[
𝐺𝐾+1

𝐺𝐾
] =

1

3
𝑒𝑡 (

1
1
) +

1

6
𝑒−

1
2
𝑡 (

1
−2

) 

So, one can also write  

[
𝐺𝐾+1

𝐺𝐾
] =

1

3
(1)𝐾 (

1
1
) +

1

6
(−

1

2
)
𝐾

(
1

−2
) 

Where,  

𝐺𝐾 =
1

3
[1 − (−

1

2
)
𝐾

] 

Now for the limit where k tends to infinity for that 𝐺𝐾 =
1

3
. So, I mean the idea here is that we can 

use this concept of Eigen value and Eigen vector and their decomposition to find out or solve this 

kind of a linear system. 

(Refer Slide Time: 08:43) 

 

Now another important issue just to discuss the that singular value decomposition which is called 

SVD. Now let us consider a matrix A so we can do a lot of different kinds of decomposition like 

LU, or LDU or we can do 𝑆𝜆𝑆−1 or we can do QR like 𝑄𝜆𝑄−1. So, if you look at this kind of 

decomposition LU or LDU there is no restriction on A that means he could be anything still we 

can do this kind of decomposition to have these kinds of decompositions it has to be square matrix. 

 

And also, for this it has to be square matrix. So, there are certain restrictions now 𝑄𝜆𝑄𝑇 is a special 

𝑆𝜆𝑆−1 decomposition for the conditions given as A = A transpose and positive definiteness for 
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these situations this is a special decomposition of this kind of decomposition 𝑆𝜆𝑆−1. Now what 

we can do let us say A is a square matrix we can say  

𝐴 = 𝑢 ∑𝑉𝑇 

this is orthogonal vector this would be diagonal this is again orthogonal vector. 

 

Now this matrix has four fundamental subspaces like column space, null space, column space of 

A transpose, null space of A transpose. So, these are the what we can write let us say  

𝐴[𝑣1, 𝑣2, … 𝑣𝑛] = [𝑎1𝑢1, 𝑎2𝑢2, … 𝑎𝑛𝑢𝑛] 

which we can say  

𝐴[𝑣1, 𝑣2, … 𝑣𝑛] = [𝑢1, 𝑢2, … 𝑢𝑛] [

𝑎1   
 ⋱  
  𝑎𝑛

] 

like that. So, what it gives us  

𝐴𝑉 = 𝑢 ∑   

(Refer Slide Time: 12:13) 

 

So,  

𝐴 = 𝑢 ∑ 𝑉−1 

or one can say  

𝐴 = 𝑢 ∑ 𝑉𝑇 
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V is symmetric. Now we can write  

𝐴𝑇𝐴 = (𝑢 ∑ 𝑉𝑇)
𝑇

(𝑢 ∑ 𝑉𝑇) 

So, you write the  

𝐴𝑇𝐴 = 𝑉 ∑ 
𝑇

𝑢𝑇𝑢 ∑ 𝑉𝑇 =  𝑉 ∑ 
𝑇

∑ 𝑉𝑇 

So, you can write  

𝐴𝑇𝐴 =  𝑉 [
𝑎1

2   
 ⋱  
  𝑎𝑛

2
] 𝑉𝑇 

 

Similarly, we can write  

𝐴𝐴𝑇 =  𝑢 ∑ 𝑉𝑇 𝑉 ∑ 
𝑇

𝑢𝑇 

which is  

𝐴𝐴𝑇 =  𝑢 ∑ ∑ 
𝑇

𝑢𝑇 

which is  

𝐴𝐴𝑇 =  𝑢 [
𝑎1

2   
 ⋱  
  𝑎𝑛

2
] 𝑢𝑇 

So, what is important here is that 𝐴𝑇𝐴 is always square and symmetric. So, we can again see some 

small examples like 2×2 systems or something like that. 

(Refer Slide Time: 14:09) 
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And can see how it works for example let us say we taken system  

𝐴 = [
4 4

−3 3
] 

so we can decompose into SVD. So, what we need to find out to do that u, v and sigma these are 

the matrices that one has to find out. So, first let us see  

𝐴𝑇𝐴 = [
4 −3
4 3

] [
4 4

−3 3
] 

So, A transpose A this would become  

𝐴𝑇𝐴 = [
25 7
7 25

] 

so which now A transpose A once we get it then for A transpose A. 

 

What do we now we find out the 𝜆1, 𝜆2 here. So, once you do that calculation here you get 𝜆1 = 

32, 𝜆2= 18. So, this is what you get so once you get the 𝜆𝑠 we can find out the Eigen vectors 

corresponding to that so like for  

𝜆1 = [
−7 7
7 −7

] {𝑋1} = 0 

So, after solving we get  

𝑋1 = {
1
1
} 

Now similarly for 𝜆2 = 18 we can get 𝑋2 = {
−1
1

}. 
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So, what we get then  

𝑞1 =
1

√2
{
1
1
} 

And 

𝑞2 =
1

√2
{
−1
1

} 

which is orthogonal vectors or basis vectors like this. So 𝑎1 = √32 and 𝑎2 = √18 again we say  

𝐴𝐴𝑇 = [
32 0
0 18

] 

which is gives 𝜆 is 32 and 18. So, for that the vector is {
1
0
} and {

0
1
}. So, now when you write the 

decomposition for that A can be written as which is 

𝐴 = [
4 4

−3 3
] 

which is  

𝐴 = [
4 4

−3 3
] = [

1 0
0 1

] [√32 0

0 √18
]

[
 
 
 

1

√2

1

√2

−
1

√2

1

√2]
 
 
 

 

So, this is how you can actually decompose the system. 

(Refer Slide Time: 19:41) 

 

Now we can look at another example of such kind which is let us say slightly  
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𝐴 = [
4 3
8 6

] 

here the rank would be 1 and so the row space has 𝛼1 {
4
3
} vector column space has 𝛼2 {

4
8
} that 

means one column would be independent. So, another column is not so here  

𝐴𝑇𝐴 = [
4 8
3 6

] [
4 3
8 6

] 

so, this is  

𝐴𝑇𝐴 = [
80 60
60 45

] 

So, this gives us 𝜆1 + 𝜆2 = 125 and 𝜆1𝜆2 = 0. 

 

So, 𝜆 would be 0, 125 so we get  

𝑉1 = {
4/5
3/5

} 

and  

𝑉2 = {
3/5

−4/5
} 

So,  

𝑢1 =
1

√80
{
4
8
} =

1

√5
{
1
2
} 

𝑢2 =
1

√80
{

8
−4

} =
1

√5
{

2
−1

} 

then we have 

𝐴 =
1

√5
[
1 2
2 −1

] [√125 0
0 0

] [
4/5 3/5
3/5 −4/5

] 

So, you can decompose in such fashions so here the important thing to note here is that 

𝑣1, 𝑣2 𝑎𝑛𝑑 𝑣𝑛 these are all orthonormal basis in a row space. 

 

And rank would be obviously are similarly 𝑢, 𝑢2 𝑎𝑛𝑑 𝑢𝑛 these are orthonormal basis for column 

space. That means the vectors that we are finding out these 𝑣1 vectors are the ortho normal basis 

in row space 𝑢1 vectors are the orthonormal basis in column space and 𝑣𝑟+1 …𝑣𝑛 these are 

orthonormal basis for null space and similarly 𝑢𝑟+1 …𝑟𝑛 they are orthonormal basis for null space 

of A transpose. 
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So, all these vectors that we have sort of found out they are these orthonormal bases they 

correspond to the orthonormal bases of these fundamental subspaces like row space or column 

space or null space of A transpose. So, now that is pretty much what I would like to talk on the 

linear algebra part were you have now so basically, we started with the row picture and column 

picture then we looked at the linear independence. 

 

And vectors the column vectors and then existence for the solution like when we can have a 

solution for a linear system like Ax = b. Obviously the b has to lie in the column space of A and 

then from there during elimination process we identified the pivot variables or the independent 

columns or independent variables and dependent variables and then from there we have identified 

the independent columns or then the basis vector for the null space and the complete solution. 

 

And then finally Eigen vector determinant and Eigen values and Eigen vectors and finally through 

the decompositions of singular value decomposition so that we can decompose these matrices and 

solve a linear system. So, we will stop here and continue the discussion on the other topics in the 

next class. 
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