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Lecture — 11

Linear Algebra
So, let us continue the discussion on this matrix Eigen values and Eigen vectors and we are seeing
how the Eigen values and Eigen vector they are important. So, you have looked at the positive
definite matrix and also looked at an example where this is not exactly positive definite it is a
positive semi definite matrix and there are certain properties that one has to satisfy that. So, now
using this nice property of Eigen values and Eigen vectors you can solve some of the linear systems
and we have looked at couple of examples like this here.
(Refer Slide Time: 00:56)
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Now we can move to some more example like let us say one kind of you have a system
X =3x—4y
and you have
y =2x—3y
Where x(0) = 1,y(0) = 0. So, you can see these are ordinary differential equation that would be
our next point of discussion that so how we can use our concept of matrix Eigen values and all

these to solve that. So, this is our system so we can find 4;, A, then these.

And this Eigen vector matrix Eigen value matrix and finally the solution would be like
X
{y} = cief(x1) + 67t (xy)
So, now let us say A has Eigen values of 1,, 1, and 4,, where all the A; > 0 and which is forming

the Eigen vectors like x,, x, and x,,. So, which are forming the basis for R" and C being the co-

factor matrix.
So, we can what we can find like
(i) the trace of A inverse and determinant of A inverse.

(i) trace of C and determinant of C.

So, it would be quite nice to use the property like

97



n
1
trace (A™Y) = sumof Asof (A1) = Z/l_
i=1 "

and
1
det (A™1) = product of Asof (A7) = -
=1 L
(Refer Slide Time: 03:56)
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Now
det (A™Y) - trace (A™1) = Eigen values of CT

trace (C) = (A1 ... 4y) (Z %)
oy =([T2)

Ai
So, I mean you can look at multiple examples like this I mean another example one can see like

(same as C)

So, what we can say

and

n—

you have a system
GK+1 + GK
2

GK+2 -

you have G, = 0and G, = %

98



So, we can find A and then also the limit for k tends to infinity so what it is

GK+2] [0 S5 0. 5] [GK+1]
Gg+1

1
1

() =a@+als)

which will getus C; = 1/3, C, = 1/6. So, the

i =ze (5 ()

So, A will be 1, -1/2 so the vector would be X = ( ) (_2). So, putting that back we get

(Refer Slide Time: 06:18)
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t 0
GK:H —12] li, e—%tl [52

So, which one can write

S0, we can write

GK =
1
(e (e

=3 -3 =3[ (-3)]

now if we do that so now expanding this and get this one then we can write again
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So, one can also write

Where,

Now for the limit where k tends to infinity for that G = § So, I mean the idea here is that we can

use this concept of Eigen value and Eigen vector and their decomposition to find out or solve this
kind of a linear system.
(Refer Slide Time: 08:43)
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Now another important issue just to discuss the that singular value decomposition which is called
SVD. Now let us consider a matrix A so we can do a lot of different kinds of decomposition like
LU, or LDU or we can do SAS~ or we can do QR like QAQ 1. So, if you look at this kind of
decomposition LU or LDU there is no restriction on A that means he could be anything still we

can do this kind of decomposition to have these kinds of decompositions it has to be square matrix.

And also, for this it has to be square matrix. So, there are certain restrictions now QAQ7 is a special

SAS~1 decomposition for the conditions given as A = A transpose and positive definiteness for
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these situations this is a special decomposition of this kind of decomposition SAS~1. Now what

we can do let us say A is a square matrix we can say

A=uZVT

this is orthogonal vector this would be diagonal this is again orthogonal vector.

Now this matrix has four fundamental subspaces like column space, null space, column space of
A transpose, null space of A transpose. So, these are the what we can write let us say
Alvy, vy, o vy] = [aqUq, axUy, ... AUy ]

which we can say

a,
Alvy, vy, vy = [Ug, Uy, ...un][ ]
an

like that. So, what it gives us

AVzuz

(Refer Slide Time: 12:13)
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Azuz y-1
Azuz 74

So,

or one can say
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V is symmetric. Now we can write
T

ATA = (uz vT) (uz vT)
ATA :Vz TuTuz VT = VZ TZ yT

a;

So, you write the

So, you can write

ATA=V vT

Similarly, we can write

T
AAT = uz VTVZ ul
T
AAT = uz z u’

a,?
AAT = u u’
a,>

So, what is important here is that AT A is always square and symmetric. So, we can again see some

which is

which is

small examples like 2x2 systems or something like that.
(Refer Slide Time: 14:09)
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And can see how it works for example let us say we taken system
4 4]
-3 3
so we can decompose into SVD. So, what we need to find out to do that u, v and sigma these are

1=

the matrices that one has to find out. So, first let us see

wa=[y S5 5

So, A transpose A this would become
r._[25 7
A4 = [7 25]

so which now A transpose A once we get it then for A transpose A.

What do we now we find out the A;, 4, here. So, once you do that calculation here you get 4, =
32, 1,= 18. So, this is what you get so once you get the As we can find out the Eigen vectors

corresponding to that so like for

A = [_77 _77] {X1}=0

So, after solving we get

n={})

Now similarly for A, = 18 we can get X, = {_11}
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So, what we get then

1
q1 = ﬁ{i}
And
1 —
qz = ﬁ{ 11}

which is orthogonal vectors or basis vectors like this. So a, = V32 and a, = /18 again we say

AAT = [302 108]

which is gives 4 is 32 and 18. So, for that the vector is {é} and {

decomposition for that A can be written as which is

A=[—43 le]

which is

A

So, this is how you can actually decompose the system.
(Refer Slide Time: 19:41)
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Now we can look at another example of such kind which is let us say slightly
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a=[g ¢

here the rank would be 1 and so the row space has a, {;L

means one column would be independent. So, another column is not so here

wa=lt 8

} vector column space has a, {g} that

8 6
so, this is
7, _[80 60
Ad= [60 45
So, this gives us 4; + 4, = 125 and 4,4, = 0.
So, A would be 0, 125 so we get
_(4/5
% ={s}
and
_(3/5
Ve ={ s}
So,

= gl
27 V8o -4
then we have

=i[1 2”\/75 0”4/5 3/5
Gl =l o oll3/s —4/5

So, you can decompose in such fashions so here the important thing to note here is that

v;, v, and v, these are all orthonormal basis in a row space.

And rank would be obviously are similarly u, u, and u,, these are orthonormal basis for column
space. That means the vectors that we are finding out these v, vectors are the ortho normal basis
in row space u, vectors are the orthonormal basis in column space and v, ...v, these are
orthonormal basis for null space and similarly u,, ; ...7;, they are orthonormal basis for null space

of A transpose.
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So, all these vectors that we have sort of found out they are these orthonormal bases they
correspond to the orthonormal bases of these fundamental subspaces like row space or column
space or null space of A transpose. So, now that is pretty much what | would like to talk on the
linear algebra part were you have now so basically, we started with the row picture and column

picture then we looked at the linear independence.

And vectors the column vectors and then existence for the solution like when we can have a
solution for a linear system like Ax = b. Obviously the b has to lie in the column space of A and
then from there during elimination process we identified the pivot variables or the independent
columns or independent variables and dependent variables and then from there we have identified
the independent columns or then the basis vector for the null space and the complete solution.

And then finally Eigen vector determinant and Eigen values and Eigen vectors and finally through
the decompositions of singular value decomposition so that we can decompose these matrices and
solve a linear system. So, we will stop here and continue the discussion on the other topics in the

next class.
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