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Okay so we are talking about the normal shock and we just started deriving the normal shock 

relation and what we obtain finally in the last lecture is that the Prandtl relations which is which 

provides the relationship between a star and the velocities between upstream and the 

downstream. 
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So this Prandtl relations that we obtain this is what we can see the proof of it. 
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So that is now let us say what we have is that from here what we have is that  

𝛾 + 1

2𝛾𝑢1𝑢2

(𝑢2 − 𝑢1)𝑎∗2 +
𝛾 − 1

2𝛾
(𝑢2 − 𝑢1) = 𝑢2 − 𝑢1 

 So now we divide (𝑢2 − 𝑢1) and what we get is that  

𝛾 + 1

2𝛾𝑢1𝑢2
𝑎∗2 +

𝛾 − 1

2𝛾
= 1 

So even doing be top little bit more maths what we get  

𝛾 + 1

𝑢1𝑢2
𝑎∗2 = 2𝛾 − 𝛾 + 1 = 𝛾 + 1 

So once that cancels we get  

𝑎∗2 = 𝑢1𝑢2 

So this is what you get now if you solve for the 𝑎∗ then that can gives us like  

𝑎∗2 = 𝑢1𝑢2 

So what we can do  

𝑢1

𝑎∗

𝑢1

𝑎∗
= 1 

and that provides our  

𝑀1
∗𝑀2

∗ = 1 

𝑀2
∗ =

1

𝑀1
∗ 

So if the flow ahead of shock is supersonic that means 𝑀2
∗ > 1 which means 𝑀2

∗ <  1. 

Then from this 𝑀2
∗ and 𝑀1

∗ relationship from this one we can say thus we will have shock 

behind the flow field behind the shockwave 𝑀1
∗ would be less than 1. So if 𝑀2

∗ is less than 1 

that means the 𝑀2 would be less than 1. So which proves that M behind shock wave is always 

subsonic. Okay so this is behind normal shock because this relationship is for normal shock 

relationship. 
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Now further one can extend this what we got from let us say equation (13) what we do or can 

write  

𝑀2 =
2

[
𝛾 + 1
𝑀∗2 ] − (𝛾 − 1)

 

So, from here what we get  

𝑀∗2 =
(𝛾 + 1)𝑀2

2 + (𝛾 − 1)𝑀2
 

okay. So, we can again see this is equation (20) so what we have is  

𝑀2
∗ =

1

𝑀1
∗ 

now we put equation (20) here what we get  

(𝛾 + 1)𝑀2
2

2 + (𝛾 − 1)𝑀2
2 = [

(𝛾 + 1)𝑀1
2

2 + (𝛾 − 1)𝑀1
2]

−1

 

Now if we solve for 𝑀2 that yields 

𝑀2
2 =

1 + [
(𝛾 − 1)

2 ] 𝑀1
2

𝛾𝑀1
2 −

(𝛾 − 1)
2

 

So this is what we get so let us see if 𝑀1 is 1 that means at sonic then 𝑀2 would be 1. So this 

is something you can say this is infinitely weak normal shock which is sort of defined as Mach 

wave if 𝑀1> 1 then the normal shock becomes stronger and 𝑀2 becomes less than 1.  
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However, 𝑀1 if it tends to infinity 𝑀2 tends to some finite minimum value which is in  

𝑀2 → √
(𝛾 − 1)

2𝛾
 

So that comes around 0.378 per air. So, these are the different relationship that one can obtain. 

Now again from equation (14) we get  

𝜌2

𝜌1
=

𝑢1

𝑢2
=

𝑢1
2

𝑢1𝑢2
=

𝑢1
2

𝑎∗2
= 𝑀1

∗2 

So that provides the relationship like  

𝜌2

𝜌1
=

𝑢1

𝑢2
=

(𝛾 + 1)𝑀1
2

2 + (𝛾 − 1)𝑀1
2 

So we get in that relationship between the density across the normal shock. So same thing one 

can obtain for the pressure let us say  

𝑝2 − 𝑝1 = 𝜌1𝑢1(𝑢1 − 𝑢2) = 𝜌1𝑢1
2 (1 −

𝑢2

𝑢1
) 

𝑎1
2 =

𝛾𝑝1

𝜌1
 

 Now since this has a ratio of the velocity from equation (21) if we use value of 
𝑢1

𝑢2
 we get  

𝑝2 − 𝑝1 = 𝛾𝑀1
2 (1 −

2 + (𝛾 − 1)𝑀1
2

(𝛾 + 1)𝑀1
2 ) 
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So  

𝑝2

𝑝1
= 1 +

2𝛾

𝛾 + 1
(𝑀1

2 − 1) 

okay so that is the relationship between the pressure ratio across the normal shock. The other 

way the  

𝑇2

𝑇1
=

𝑝2

𝑝1
=

𝜌1

𝜌2
=

ℎ2

ℎ1
 

= (1 +
2𝛾(𝑀1

2 − 1)

(𝛾 + 1)
) (

2 + (𝛾 − 1)𝑀1
2

(𝛾 + 1)𝑀1
2 ) 

when M tends to infinity  

𝑀2 → √
(𝛾 − 1)

2𝛾
 

 which is 0.378 or  

𝑝2

𝑝1
=

(𝛾 + 1)

(𝛾 − 1)
= 6 

𝜌2

𝜌1
= ∞ 

𝑇2

𝑇1
= ∞ 

So now using the second law of thermodynamics what we can write using second law of 

thermodynamics what we can write  

𝑆2 − 𝑆1 = 𝐶𝑝 ln
𝑇2

𝑇1
− 𝑅 ln

𝑝2

𝑝1
 



so this is what we have already derived now 𝑆2 − 𝑆1 > 0. Now so what we can do let us say if 

T2 = T1 and P2 = P1 then this becomes 0 but for M = 1 𝑆2 − 𝑆1 = 0 but for M1 > 1 𝑆2 − 𝑆1 > 

0 M1 < 1 also 𝑆2 − 𝑆1 < 0 so this is an impossible situation why? 
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Now another situations since 𝑀1 ≥ 1 which means 𝑀1 ≤ 1 so  

𝜌2

𝜌1
≥ 1 

𝑝2

𝑝1
≥ 1 

𝑇2

𝑇1
≥ 1 

𝑢1

𝑢2
≥ 1 

𝑢2

𝑢1
≤ 1 

So, which clearly means pressure, density and temperature they increases across the shock 

wave and velocity actually and Mach number decreases across the shock wave okay. So that is 

what happens when you have a normal shock now, we look at the change in stagnation 

properties. 

 

So we have a normal shock here so let us say we have a fluid particle like this so that has been 

M1 > 1. So M1 and P1 and T1 and S1 this is an imaginary place it is a state 1a where the fluid 

element has been brought to rest isentropically. Now M2 < 1 here where the fluid particles so 



this is M2, P2, T2, S2 stagnation for 2 to 2a which is P02. So this would be P01, T01, S1, Po2, 

T02, S2.  

 

Now from energy equation what we can write that is equation 4 using equation 4 we write  

𝐶𝑝𝑇1 +
𝑢1

2

2
= 𝐶𝑝𝑇2 +

𝑢2
2

2
 

that means the free particle from here this was brought to rest which is a sort of an imaginary 

point isentropically the then this would be  

𝐶𝑝𝑇1 +
𝑢1

2

2
= 𝐶𝑝𝑇01 
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Similarly, for 2 to 2a  

𝐶𝑝𝑇2 +
𝑢2

2

2
= 𝐶𝑝𝑇02 

okay now  

𝐶𝑝𝑇01 = 𝐶𝑝𝑇02 

so that means what we get the stagnation temperature remains constant across a stationary 

normal shock wave in a calorically perfect gas it is 𝐶𝑝 = 𝐶 that means now this is very 

important that we say it is a stationary normal shock wave. Because if the normal shock wave 

is moving then this condition may not be valid. 

 

So when the shock wave is stationary and it is a normal shock wave then the stagnation 

temperature across the normal shock wave remains constant. In general, the stagnation enthalpy 



is constant across a stationary normal shock. Okay now for chemically reacting gases if there 

is a chemical reaction then T01 would not be T02 since Cp is not constant anymore. 

 

Now consider the changes between the imaginary state so considering the changes between the  

imaginary states 1a and 2a  

𝑆2𝑎 − 𝑆1𝑎 = 𝐶𝑝 ln
𝑇2𝑎

𝑇1𝑎
− 𝑅 ln

𝑝2𝑎

𝑝1𝑎
 

 and what we have is 𝑆2𝑎 = 𝑆2 , 𝑆1𝑎 = 𝑆1, 𝑇2𝑎 = 𝑇1𝑎 = 𝑇0 and 𝑝2𝑎 = 𝑝02, 𝑝1𝑎 = 𝑝01 so what 

we get  

𝑆2 − 𝑆1 = 𝑅 ln
𝑝02

𝑝01
 

 

so what we could write  

𝑝02

𝑝01
= 𝑒−(𝑆2−𝑆1)/𝑅 

So that is what you get for stagnation pressure ratio relationship. 
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Since (𝑆2 − 𝑆1) > 0,  
𝑝02

𝑝01
 will be less than 1 which clearly means that the total pressure or 

stagnation pressure decreases across a normal shock. Now we can get the density too  

𝜌0 =
𝑝0

𝑅𝑇0
 

so what we can write  

𝜌02

𝜌01
=

𝑝02

𝑇02
∙

𝑇01

𝑝01
 



which is since the stagnation temperature is same this will become P02/P01 which is also less 

than 1 that means the stagnation density is also so is rho 0 1 that means across normal shock 

stagnation pressure and density decreases whereas stagnation temperature remains constant 

okay. 

 

So what we had is that fluid particles from here so this has gone to state 2a and this has gone 

to 1a. So this is 1 this is 2 for adiabatic 1D flow we can again write  

𝐶𝑝𝑇1 +
𝑢1

2

2
= 𝐶𝑝𝑇2 +

𝑢2
2

2
 

𝐶𝑝𝑇1 +
𝑢1

2

2
= 𝐶𝑝𝑇01 

𝐶𝑝𝑇2 +
𝑢2

2

2
= 𝐶𝑝𝑇02 

𝑇01 = 𝑇02 

and Cp is constant. 
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And again, we can write the change in entropy which is delta S let us say  

𝑆2 − 𝑆1 = 𝐶𝑝 ln
𝑇2

𝑇1
− 𝑅 ln

𝑝2

𝑝1
 

𝑆2 − 𝑆1 = 0 

0 = 𝐶𝑝 ln
𝑇02

𝑇02
− 𝑅 ln

𝑝02

𝑝01
 

ln
𝑝02

𝑝01
= 0 



𝑝02

𝑝01
= 1 

𝑝01 = 𝑝02 

So, from perfect gas law what it gets  

𝑝0 = 𝜌0𝑅𝑇0 

𝜌0 =
𝑝0

𝑅𝑇0
 

which is constant. 

 

So, this brings to a very important conclusion that for isentropic flow  

𝑝0, 𝜌0, 𝑎𝑛𝑑 𝑇0 are constant everywhere in the flow. So, which means whenever you have an 

isentropic flow your stagnation properties remain constant everywhere but whenever you have 

stationary normal shock just again, I am reiterating that it is a stationary normal shock then 

your stagnation density stagnation pressure that decreases but stagnation temperature only 

remains constant. 

 

And across a normal shock density increases I mean static density increases, static pressure 

increases, static temperature increases whereas the flow velocity decreases in the downstream 

of the shock. So that is pretty much what we wanted to talk about in normal shock relations. 

So, what we will do we will just talk about the oblique shock and other stuff in the next lecture 

we will stop about this here today. 


