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Review of Compressible Flows (Contd.,) 

 

Okay so let us continue the discussion on compressible flow. So we are looking at the 

relationship between Mach number and the velocity and this is what we stopped at. 
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In the last session where you get the relationship between Mach number in the local velocity 

now just we derived that equation 6 but some points here to be noted which are important is 

that at A, 𝑎∗ can be designated as 𝑎𝐴
∗  similarly at B it should be 𝑎𝐵

∗ . So, if the flow is not 

adiabatic between A and B then a star would not be same or if the flow is adiabatic everywhere 

then 𝑎𝐴
∗ = 𝐶 for isentropic flow also 𝑎𝐵

∗ = 𝐶. 
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Now if we return to the stagnation conditions like for U, P, T density like that now let us say 

consider the fluid let us consider the fluid at A which is point (1) equation (4) and this fluid is 

brought to rest isentropically at so brought to rest at point (2) of equation. So, what will happen 

then 𝑢2 = 0, 𝑝2 = 𝑝0,  𝑇2 = 𝑇0 or something like that. So, from equation (4) which is true for 

both adiabatic and hence isentropic flow we can write  

𝐶𝑝𝑇 +
𝑢2

2
= 𝐶𝑝𝑇0 

So that is what you can write and you can further simplify 

𝑇0

𝑇1
= 1 +

𝑢2

2𝐶𝑝𝑇
= 1 +

𝑢2

2𝛾𝑅𝑇/(𝛾 − 1)
 

 if we simplify bit further what we get  

1 +
(𝛾 − 1)

2

𝑢2

√𝛾𝑅𝑇
= 1 +

(𝛾 − 1)

2

𝑢2

𝑎2
 

So, this will have 

𝑇0

𝑇1
= 1 +

(𝛾 − 1)

2
𝑀2 

so that is equation number (8). Now if we say the process is isentropic then what we can write 

that 

𝑝0

𝑝
= (

𝑇0

𝑇
)

𝛾
𝛾−1

= (
𝜌0

𝜌
)

𝛾

 

so this is P, T 𝜌 relationship for isentropic flow. 

 

And once we put it back in equation 8 this gives another relationship for  



𝑝0

𝑝
= (1 +

(𝛾 − 1)

2
𝑀2)

𝛾
𝛾−1

 

 

which is equation (9) and another one on density  

𝜌0

𝜌
= (1 +

(𝛾 − 1)

2
𝑀2)

1
𝛾−1

 

which is equation (10). So, all these relationships we get. 
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Now the actual flow field does not need to be isentropic to calculate 𝑝0, 𝑇0, 𝜌0 etc because these 

are imagined and defined quantities if the flow field is non isentropic that is it if non isentropic 

that means not adiabatic and or irreversible then what will have happened 𝑇0𝐴 ≠ 𝑇0𝐵, 𝑝0𝐴 ≠

𝑝0𝐵 and  𝜌0𝐴 ≠ 𝜌0𝐵. So, these properties are not going to be same. 

 

Now if the flow field is isentropic throughout if let us say isentropic throughout then 

𝑝0, 𝑇0, 𝜌0 these are constants okay. So then from equation (5) what we can write  

𝑎1
2

(𝛾 − 1)
+

𝑢1
2

2
=

𝑎2
2

(𝛾 − 1)
+

𝑢2
2

2
 

If let us say if 2 refers to stagnation or conditions then what we get  

𝑎2

(𝛾 − 1)
+

𝑢2

2
=

𝑎0
2

(𝛾 − 1)
 

that is equation (11). 

 

Now from equation (6) and (11) we get  



𝛾 + 1

2(𝛾 − 1)
+ 𝑎∗2 =

𝑎0
2

(𝛾 − 1)
 

In the other way one can write  

𝑎∗2

𝑎0
2 =

𝛾𝑅𝑇∗

𝛾𝑅𝑇0
 

which is  

𝑇∗

𝑇0
=

2

𝛾 + 1
 

so if we put 𝛾=1.44 this would be roughly 0.833 equals to if we use for 𝛾=1.44 
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So, what we get since 𝑝∗, 𝜌∗are defined at M = 1 condition we get \ 

𝑝0

𝑝∗
= (1 +

(𝛾 − 1)

2
)

𝛾
𝛾−1

 

So which means  

𝑝∗

𝑝0
= (

2

𝛾 + 1
)

𝛾
𝛾−1

 

which would be 0.528 for air this also that critical pressure ratio now if P/P0 is less than critical 

pressure ratio then the flow is supersonic flow okay now that in the similar way we get for  

𝜌∗

𝜌0
= (

2

𝛾 + 1
)

1
𝛾−1

 

which would be 0.634 for air. 

 

So, these are the now finally we consider equation (6) again and what we can write is 



𝑎2

(𝛾 − 1)
+

𝑢2

2
=

𝛾 + 1

2(𝛾 − 1)
𝑎∗2 

Now it divides by u square so you can write  

(
𝑎
𝑢)2

(𝛾 − 1)
+

1

2
=

𝛾 + 1

2(𝛾 − 1)
(
𝑎∗

𝑢
)2 

So, which 

(
1
𝑀)2

(𝛾 − 1)
=

𝛾 + 1

2(𝛾 − 1)
(

1

𝑀∗
)2 −

1

2
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So this gives an fantastic relationship between M and 𝑀∗ so this  

𝑀2 =
2

[
𝛾 + 1
𝑀∗2 ] − (𝛾 − 1)

 

So this is an relationship that you get between M and 𝑀∗. Now if M = 1 then 𝑀∗ also becomes 

1 if M < 1 which is subsonic so 𝑀∗ also less than 1 if even greater than 1 𝑀∗ also becomes 

greater than 1 if M tends to infinity 𝑀∗ tends to (𝛾 + 1)/(𝛾 − 1)  

 

So, these are the correlation that you can obtain from the M and 𝑀∗ relationship and this is for 

1D dimensional steady compressible flow you can derive. Now moving ahead so will other 

thing that we will talk about is the normal shock relations. Okay so the first question which 

comes to somebody mind what is shockwave? So that is an very pertinent question now a single 



way one can answer that shockwave is a discontinuity which is a of very thin region in the flow 

field of a supersonic flow across which the flow properties change drastically.  

 

So means this is an discontinuity in the flow field which is of a very thin region order of 

10−5 𝑜𝑟 10−6 centimetres depends on the geometry and the condition in a supersonic flow 

across which the flow properties changes drastically. Now this can be seen or measured in 

schlieren photographs or images because of so it can be measured or seen in schlieren 

photograph because of density variation.  
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Now shock waves can travel so shock waves can travel for example shock tube, sonic boom 

these are the example almost explosive compression process. So, there is a dramatic increase 

in pressure now let us see how so you have a object inside the flow field. So, these are the 

pattern of the streamline let us say M < 0 less than a infinity so this is how we can define how 

shock waves are formed okay. 

 

So, we consider a flat plate or rather this object this is mounted in a flow and the flow field 

consists of individual molecules some of which impact on the face of this let us say cylinder. 

Now in general there will be change in molecular energy and momentum due to impact. Now 

this change in momentum is seen as an obstruction by the molecules.  

 

So, then the fluid particle will sense there is an obstruction sitting there and because of change 

in that momentum. Now the random motions of these molecules communicate this obstruction 

to the other region of the flow through collision that means with the through the molecular 



collision these presence of this object is being communicated to the other region. So, the 

presence of obstruction is propagated everywhere even upstream by sound waves. 

 

So, this is very important that the presence of the obstruction is propagated everywhere even 

upstream by sound waves. Now this is for the situation if the incoming stream is subsonic like  

𝑉∞ < 𝑎∞ 

then the sound waves can work upstream and convey the presence of this body to the fluid 

particle sitting here. So, from this to this position this information can be passed and the flow 

properties and the flow field change accordingly to accommodate these changes and that is 

why you can see the streamlines goes like that.  

 

Now this is alright if the upstream condition is this but if the upstream condition is supersonic 

then what will happen this sound wave cannot propagate from this position to the upstream 

position and the information of this presence of this body cannot be passed to the point which 

is sitting in the upstream. So, this cannot no longer propagate upstream instead what will 

happen they tend to coalesce a short distance ahead of the body.  

 

So, if the body is here around a short distance ahead of that they will coalesce and this 

coalescence of the waves form a thin shock wave okay. So, this is what happens when the flow 

field is supersonic and there is a body which is placed inside the flow field then the information 

of this presence of this body cannot be passed to the upstream and then this shock wave is 

found. 

 

And there could be two types of shock waves one could be normal shock wave other one could 

be oblique. Now in normal shock wave the it is perpendicular to the flow field and this is very 

strong or rather strongest shock waves. Now flow behind the normal shock waves is also 

subsonic let us see if you have a normal shock here then this is upstream which is greater than 

1 then this is downstream. 

 

So, this would be subsonic so the upstream flow does not know about the presence of shock 

waves and the flow properties have to change abruptly across the shock wave to adjust this 

variation between upstream and downstream. So, this is what a shock wave is all about and 

how shock wave is formed and all these. 
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Now we will look at the normal shock relations. So normal shock relations will have this small 

shock let us say so 𝑢1, 𝜌1, 𝑇1, 𝑝1, 𝑀1. So, this is stagnation 1 and this is 𝑢2, 𝜌2, 𝑇2, 𝑝2, and 𝑀2 < 

1 this is at point (2). So, these informations all are known and downstream information are sort 

of unknown now again the situation here is this is 1D flow steady adiabatic flow no shaft work 

and neglecting potential energy. 

 

So, these are the some of the assumptions which are associated so that we can derive the simple 

equations now whatever we have done so that we can use derived equation 1, 2, and 3 directly. 

So, what we write  

𝜌1𝑢1 = 𝜌2𝑢2 

that is form continuity. So, let us say equation (14) or mass conservation equation and we can 

write  

𝑝1 + 𝜌1𝑢1
2 = 𝑝2 + 𝜌2𝑢2

2 

which is momentum that is (15) and  

ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
 

which is energy that is (16). Now we assume perfect gas so that we can write  

𝑝 = 𝜌𝑅𝑇 

And  

ℎ = 𝐶𝑝𝑇 

So, what we have we have 1, 2, 3, 4, 5. So number of equations are 5 and unknowns are 6. So, 

what we will do? 
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We divide (15)/(14) and what we get  

𝑝1

𝜌1𝑢1
−

𝑝2

𝜌2𝑢2
= 𝑢2 − 𝑢1 

𝑎 = √𝛾𝑅𝑇 

𝑎2 =
𝛾𝑝

𝜌
 and 

𝑝

𝜌
=

𝑎2

𝛾
 

So, if you use that this would becomes  

𝑎1
2

𝛾1𝑢1
−

𝑎2
2

𝛾2𝑢2
= 𝑢2 − 𝑢1 

Now from equation (16) get  

𝑎1
2 =

𝛾 + 1

2
𝑎∗2 −

𝛾 − 1

2
𝑢1

2 

So, what you can write  

𝑎2
2 =

𝛾 + 1

2
𝑎∗2 −

𝛾 − 1

2
𝑢2

2 

this is happening because since the flow is adiabatic 𝑎1
∗ = 𝑎2

∗  

So, we can get  

𝛾 + 1

2

𝑎∗2

𝛾𝑢1
−

𝛾 − 1

2𝛾
𝑢1 −

𝛾 + 1

2

𝑎∗2

𝛾𝑢2
−

𝛾 − 1

2𝛾
𝑢1 = 𝑢2 − 𝑢1 

So further if we do the little bit of mathematics what we get finally is  

𝑎∗2 = 𝑢1𝑢2 

So, this is equation number (19) and this relationship is known as or called as Prandtl relation. 

So, this is Prandtl relation okay so this is a very important relation for normal shock where you 

get this a star and the velocity upstream of the shock and the relationship between the both the 



upstream and downstream velocities. So, we can see how one can obtain this but we will 

continue that discussion in the next lecture so we will stop it here. 


