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Lecture – 06 

Review of Compressible Flows 

 

Okay so let us continue the discussion of the compressible flow this is just we started off and 

what we are trying to discuss now how this sound wave is generated and how one can estimate 

the speed of sound. So, this is what we talked about. 

(Refer Slide Time: 00:33) 

 

That the speed of sound and the transmission process. So the process is supposed to be an 

isentropic.  
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Now since this process is isentropic what one can write that 

𝑝

𝜌𝛾
= 𝐶 

so this is      𝑝𝜌−𝛾 = 𝐶.  

Now if we take differentiation of this so this would be  

−𝛾𝜌−(𝛾+1)𝑝 +
1

𝜌𝛾

𝑑𝑝

𝑑𝜌
= 0 

So, taking the difference or differentiating this expression with respect to density so what I get  
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So, what we get from here is that that  

(
𝜕𝑝

𝜕𝜌
)

𝑆

=  𝛾
𝑝

𝜌
 

again for perfect gas what we can write is  

𝑝 = 𝜌𝑅𝑇 

So that means  

𝑝

𝜌
= 𝑅𝑇 

So, what we will write that  

(
𝜕𝑝

𝜕𝜌
)

𝑆

=  𝛾𝑅𝑇 

okay. So, what was the speed of sound this is  

(
𝜕𝑝

𝜕𝜌
)

𝑆

= √ 𝛾𝑅𝑇 

Now this is how you can estimate the local speed of sound. Now when you talk about the speed 

of sound or you estimate the speed of sound immediately there is another important thing which 

comes in place is that the Mach number. 

 

So, the Mach number is ratio between local speed to the speed of sound and why this number 

is important because this can categorize the flow field in different zones like for example it 

could be less than 1 it could be 1 it could be greater than 1. So, when it is less than 1 typically, 

we call it subsonic flow 1 is sonic flow when it is greater than 1 is the supersonic flow like this. 

 



But now when it goes beyond Mach 5 then we call it is at the hypersonic flow also. So that is 

what it happens in your scramjet application or the intake is now typically m < 0.3 where in 

this range the density variation is pretty much negligible and that is why this is where the it 

assumed to be a incompressible zone or incompressible flows because the variation in density 

is quite small or rather negligible. 

 

Again mind it we are not talking about incompressible fluid this is in compressible flow 

because this is a very common mistake that one can do still the even if it is here fluid is 

compressible by nature but it is in that limit this is becoming in the flow happens to be the 

incompressible and as I said it could be another could be Mach greater than 5 which is 

hypersonic flow okay. Now one may think about what the physical interpretation of this Mach 

number. 
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Mach number one can think this is a ratio of two energy, one is kinetic energy the other is 

internal energy. So how you do that I mean just a simple way to look at that I mean let us say 

kinetic energy by internal energy so we write  

𝑉2

2
𝑒

=

𝑉2

2
𝑅𝑇(𝛾 − 1)

  

 

which would be  

𝛾
𝑉2

2
𝑎2

(𝛾 − 1)

 



 

So, this would be  

𝛾(𝛾 − 1)𝑀2

2
 

So that is what it happens what I said this is a ratio between kinetic energy and internal energy. 

So with that we will start the 1D compressible flow. Now let us consider a region here like this 

okay we draw a control volume okay and these sides there are flows coming in this side this 

goes out this is one dimensional. So, let us define the coordinate system this could be the area 

so at the inlet all properties are like P1, T1, rho1, e1 here p2, u2, T2, rho2, e2. So, what we are 

considering here the flow of a gas through this 1D region.  

 

So, this region could be normal shock wave or region with heat addition. Now the properties 

of flow changes as each flow across this region. So, let us consider this control volume here 

which we have drawn and they are between station 1 and 2 and A is the area of the control 

volume which is perpendicular to the flow then we can have some more assumption like steady 

flow, no body forces, no potential energy, Inviscid flow. 

 

So, these are the assumption that you can have then what you can write you write down the 

conservation equation of mass or the continuity equation. So, first thing that you write the 

continuity equation. So, if I write the complete continuity equation which we have derived now 

that is how it looks like which is 0. Now there are assumption of steady flow so this goes to 0 

because of steady flow. So what it gives us back is the control surface v dot n which is 0. 
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Now so we will write this one at station 1  

∫ 𝜌(�̅� ∙ 𝑛)𝑑𝐴

1

+ ∫ 𝜌(�̅� ∙ 𝑛)𝑑𝐴

2

= 0 

Now if we go about those drawn control volume so this will become  

−𝜌1𝑢1𝐴1 + 𝜌2𝑢2𝐴2 = 0 

 

Now the area is same constant area so this becomes  

𝜌1𝑢1 = 𝜌2𝑢2 

that let us say equation 1. So, this is an continuity equation for steady 1D uniform flow this is 

for steady 1D uniform flow that is the continuity equation.  

 

Similarly, we derived the momentum equation so first we can write the complete form which 

is  

∭ 𝜌�̅�𝑑∀

𝐶𝑉

+ ∬ 𝜌�̅�(�̅� ∙ 𝑛)𝑑�̅�

𝐶𝑆

= ∑ 𝐹𝑠 + 𝐵 

Now again this goes 0 because of steady this goes to 0 because of no body force so we get this 

equals to sum of that now this could be the sum of the surface forces. So similarly we will write  

𝜌1(−𝑢1𝐴1)𝑢1 + 𝜌2(𝑢2𝐴2)𝑢2 = 𝑝1𝐴 − 𝑝2𝐴 

so let us replace this A1 as A and A2 as A so they become consistent so what we get  

𝑝1 + 𝜌1𝑢1
2 = 𝑝2 + 𝜌2𝑢2

2 

is an equation or the momentum equation for steady 1D flow. So, you see when we write down 

the complete equation system and then simplify with the assumption this makes things much 

simpler. 
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So similarly you could write the energy equation 𝜌(�̅� ∙ 𝑛)𝑑𝐴 now no factor this goes to 0 this 

goes to 0 for steady this goes to 0 for no body force. So, this becomes  

�̇� = (ℎ1 +
𝑢1

2

2
) (−𝑚1̇ ) + (ℎ2 +

𝑢2
2

2
) (𝑚2̇ ) 

Now from continuity equation we know  

𝑚1̇ = 𝑚2̇ = �̇� 

�̇�

�̇�
= − (ℎ1 +

𝑢1
2

2
) + (ℎ2 +

𝑢2
2

2
) 

then you get 

�̇�

�̇�
= − (ℎ1 +

𝑢1
2

2
) + (ℎ2 +

𝑢2
2

2
) 

Now this if we write then I can write that so  

(ℎ2 +
𝑢2

2

2
) = (ℎ1 +

𝑢1
2

2
) + 𝑞 

where q is the heat added per unit mass. So that is equation number 3 this is for energy equation 

steady one-dimensional flow. Now this is one way to look at the energy equation but there 

could be an alternative way and which would be quite handy because when you deal with 

compressible flow maybe the alternative form would become handy let us look at that what is 

that alternative form of energy equation. 

 

So, let us consider the same one-dimensional flow what it is there and then assuming adiabatic 

flow which is no heat addition. So, what we get that  

 



(ℎ2 +
𝑢2

2

2
) = (ℎ1 +

𝑢1
2

2
) 

because there is no heat addition considering the perfect gas which is  

ℎ = 𝐶𝑝𝑇 

where Cp is constant. 
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Then what I can write that  

(𝐶𝑝𝑇1 +
𝑢1

2

2
) = (𝐶𝑝𝑇2 +

𝑢2
2

2
) 

 

so that is let us say equation number 4. So alternatively, one can write  

𝛾𝑅

(𝛾 − 1)
𝑇1 +

𝑢1
2

2
=

𝛾𝑅

(𝛾 − 1)
𝑇2 +

𝑢2
2

2
 

which is equation number 5. 

𝑎1
2

(𝛾 − 1)
+

𝑢1
2

2
=

𝑎2
2

(𝛾 − 1)
+

𝑢2
2

2
 

So that is an alternative way one can write this energy equation. 

 

So, let us have some other definitions in place where we consider a point let us say A in a flow 

field now at A field element is traveling at some velocity and speed so that M V static pressure 

is P and temperature is T. So, at the point A which we have considered is inside the flow field 

the fluid element is traveling at some Mach number and velocity pressure and temperature. 

 



Let us imagine the fluid element is adiabatically slowed down. So, the fluid element is 

adiabatically slowed down or that is if Mach number at that point A if the Mach number is 

greater than 1 then it is slowed down or speeded up a Mach number is less than 1. So, this is 

done until Ma is 1. So that means to reach a sonic speed at A if the upstream fluid is at higher 

speed then it has to be slowed down but it is done adiabatically if the upstream fluid is at the 

lower speed or the subsonic then it has to be speeded up to reach that sonic speed. 
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Now what happens as M changes adiabatically the fluid temperature also changes. So when 

the fluid element arrives at M equals to 1 from its initial state at M and T let us say the new 

temperature is T* and let us say the speed of sound at this hypothetical condition which is M 

equals to  1 as 𝑎∗ and which can be find out that  

𝑎∗ = √𝛾𝑅𝑇∗ 

Now one can note here for any flow for any flow with Mach number M and temperature T we 

can associate it values of so T* and 𝑎∗.  

 

So, let us consider again the same fluid element at A now imagine that we isentropically slow 

this fluid element to 0 velocity that means stagnate the flow. So, which indirectly means 

isentropically the fluid element has been brought to 0 velocity. Now the pressure and 

temperature of the fluid element when v is 0 are defined as stagnation pressure and stagnation 

temperature which is not that means at the velocity 0 condition this is what the pressure and 

temperature would be these are called the stagnation pressure or stagnation temperature.  

 



Now actual pressure P and T these are called now static pressure and temperature. Now for 

static flow or no flow for no flow P0 would be P and T0 would be T. So, the characteristics 

Mach number which is  

𝑀∗ =
𝑉

𝑎∗
 

 

so that the real M is V by a similarly stagnation speed of sound which would be a0 that is  

𝑎0 = √𝛾𝑅𝑇0 

and stagnation density which is  

𝜌0 =
𝑃0

𝑅𝑇0
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Now considering equation 5 what we can write now  

𝑎1
2

(𝛾 − 1)
+

𝑢1
2

2
=

𝑎2
2

(𝛾 − 1)
+

𝑢2
2

2
 

where point 1 corresponds to point A and point 2 corresponds to the imagined condition where 

the fluid element it brought to M equals to 1 adiabatically okay. So actual speed of sound at 

point A is a actual speed of sound at actual velocity at point A is u so what we can write 

𝑎2

(𝛾 − 1)
+

𝑢2

2
=

(𝛾 + 1)

2(𝛾 − 1)
𝑎∗2 

 

 



 

So, this is what is equation number 6 that we get. So, for two different points we get this 

relationship between speed of sound and the a star. So, we will stop the discussion here and 

continue from where in the next session. 


