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Axial Turbine (contd.,) 

 

So, let us continue the discussion on axial turbine. So, we are looking at different stage efficiency 

and their estimation and we have looked at the TS diagram and the different losses and this is 

where we stopped that with an argument.  
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That lambda could be equals to y. Now, how we can do that, we can look at this  



𝑌𝑁 =
(𝑝01 − 𝑝02)

(𝑝02 − 𝑝2)
=

(
𝑝01

𝑝02
− 1)

(1 −
𝑝2

𝑝02
)
 

and  

𝑝01

𝑝02
=

𝑝01

𝑝2

𝑝2

𝑝02
= (

𝑇01

𝑇2
)

𝛾
𝛾−1

(
𝑇2

𝑇02
)

𝛾
𝛾−1

 

𝑇02 = 𝑇01 

since  

𝑝01

𝑝02
= (

𝑇2

𝑇2
′)

𝛾
𝛾−1

 

Then we can write  

𝑌𝑁 =

((
𝑇2

𝑇2
′)

𝛾
𝛾−1

− 1)

(1 − (
𝑇2

𝑇02
)

𝛾
𝛾−1

)

=

[1 +
𝑇2 − 𝑇2

′

𝑇2
′ ]

𝛾
𝛾−1

− 1

1 − [
𝑇2 − 𝑇02

𝑇02
+ 1]

𝛾
𝛾−1

 

Now, one can give you an argument  

(𝑇2 − 𝑇2
′) ≪ 𝑇2

′ 

(𝑇2 − 𝑇02) ≪ 𝑇02 

If that is the case, then the term which the air inside the bracket can be expanded using binomial 

expansion and now we can write like 

𝑌𝑁 =
𝑇2 − 𝑇2

′

𝑇02 − 𝑇2

𝑇02

𝑇2
′ = 𝜆𝑁

𝑇02

𝑇2
′ ≈ 𝜆𝑁

𝑇02

𝑇2
 

 So, this is although this approximation is not very accurate, but fair enough to use and we have  

𝑇02

𝑇2
= 1 +

𝛾 − 1

2
𝑀2

2 
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So, even at 2, where M2 = 1, 𝜆𝑁 is roughly 0.86Y. So, they are that is why the comment is that 

they are quite close enough values. Now, this 𝜆𝑁 and 𝜆𝑅 they can be also correlated to the isentropic 

efficiency of the stage 𝜂𝑠. now how do you know  

𝜂𝑠 =
𝑇01 − 𝑇03

𝑇01 − 𝑇03
′ =

1

1 +
𝑇03 − 𝑇03

′

𝑇01 − 𝑇03

 

So, and what we can write from that TS diagram that  

𝑇03 − 𝑇03
′ = 𝑇3 − 𝑇3

′ = (𝑇3 − 𝑇3
′′) + (𝑇3

′′ − 𝑇3
′) 

So, this we can write from the TS diagram. Now, what we have that 

𝑇2
′

𝑇3
′ =

𝑇2

𝑇3
′′ = (

𝑝2

𝑝3
)

𝛾−1
𝛾

 

So, we can further simplify the terms like  

𝑇3
′′ − 𝑇3

′

𝑇3
′ =

𝑇2 − 𝑇2
′

𝑇2
′  

then  

𝑇3
′′ − 𝑇3

′ = 𝑇2 − 𝑇2
′ 𝑇3

′

𝑇2
′ 

𝑇3
′

𝑇2
′ =

𝑇3

𝑇2
 

we will write  



𝜂𝑠 =
1

1 +
[(𝑇3 − 𝑇3

′′) + (𝑇2 − 𝑇2
′)

𝑇3

𝑇2
]

(𝑇01 − 𝑇03)
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So, this further we can do  

𝜂𝑠 =
1

1 +
[𝜆𝑅 (

𝑊3
2

2𝐶𝑝
) + 𝜆𝑁 (

𝑊2
2

2𝐶𝑝
)

𝑇3

𝑇2
]

(𝑇01 − 𝑇03)

 

So, if you look at all these illustrations that we are writing down here, the coming from that TS 

diagram. Now, what else we have  

𝑊3 = 𝑉𝑧 sec 𝛽3 

𝑉2 = 𝑉𝑧 sec 𝛼2 

and  

∆𝑇0𝑠 = (𝑇01 − 𝑇03) =
 𝑈𝑉𝑧

𝐶𝑝

(tan 𝛽2 + tan 𝛽3) =
 𝑈𝑉𝑧

𝐶𝑝
(tan 𝛽3 + tan 𝛼2 −

1

ϕ
) 

So, we can rewrite this expression of  

𝜂𝑠 =
1

1 +
ϕ
2

[𝜆𝑅 sec2 𝛽3 +
𝑇3

𝑇2
𝜆𝑁 sec2 𝛼2]

(tan 𝛽3 + tan 𝛼2 −
1
ϕ)

 



Now since Y is 𝜆, then 𝑌𝑅 and 𝑌𝑁 may replace 𝜆𝑅 and 𝜆𝑁 in this equation. So, then we can replace 

these things and get the stage efficiency and all this.  
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So, the next what we will look at the mean radius stage design. So, mean radius stage design. So, 

from cycle calculations we have already got the following parameters that 

𝑚̇, 𝜂𝑡𝑇01, ∆𝑇0𝑠,
𝑝01 

𝑝03 ⁄ , 𝑝01. Now N is the rotational speed or rpm, mean blade speed is U. So, 

that is mean blade speed and this mean blade speed is restricted by the rotational criteria and they 

have to be satisfied. And also we assume some value of lambda N let us say 0.5 which is a 

reasonable guess.  

 

And also we start with an assumption  

𝑉𝑧2 = 𝑉𝑧3 

and  

𝑉1 = 𝑉3 

So, then we write this  

𝜓 =
2𝐶𝑝∆𝑇0𝑠

𝑈2
 

now we choose a value of ϕ and using that for we can calculate the degree of reaction. Now, since 

𝜓 = 2 ϕ(tan 𝛽2 + tan 𝛽3) 

and  



tan 𝛼2 = tan 𝛽2 +
1

ϕ
 

tan 𝛼3 = tan 𝛽3 −
1

ϕ
 

Now if we consider a single state thereby and we have 𝑉𝑧1 = 𝑉𝑧3 So, it has to be single stage and 

inlet is axial, so 𝛼1 = 0 and 𝑉1 = 𝑉3. So which means 𝛼1 = 0 , 𝛼3 = 0.  

 

So that gives us 

tan 𝛽3 =
1

ϕ
 

and  

tan 𝛽3 =
1

2ϕ
(

𝜓

2
+ 2Λ) 

Λ =
1

2
[2ϕ tan 𝛽3 −

𝜓

2
] 

Now, so these the degrees of reaction that increases from root to tip there for small values of this 

degree of reaction at mean radius must be avoided, because that will mean negative degree of 

reaction at the root.  
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Again, we have  

tan 𝛽2 =
𝜓

2ϕ
− tan 𝛽3 



tan 𝛼2 = tan 𝛽2 +
1

ϕ
 

So next we can calculate the density as station 1, 2 and 3. So let us draw the velocity triangle. So 

this is U W3 V3 so, this is W3 V3 W2, V2. So, this is 𝛼3, 𝛽3, 𝛽2, 𝛼2, it is blade height. Now, what 

we write here  

𝑉𝑧2 =
𝑈𝑉𝑧

𝑈
= 𝑈ϕ 

and  

𝑉2 = 𝑉𝑧 sec 𝛼2 

So,  

𝑇02 − 𝑇2 =
𝑉2

2

2𝐶𝑝
 

Since 

𝑇02 = 𝑇01 

 which is  

𝑇2 = 𝑇02 −
𝑉2

2

2𝐶𝑝
 

and what we have 

𝑇2 − 𝑇2
′ = λ𝑁

𝑉2
2

2𝐶𝑝
 

So, we get  

𝑇2
′ = 𝑇2 − λ𝑁

𝑉2
2

2𝐶𝑝
 

also we have 

𝑝01

𝑝2
= (

𝑇01

𝑇2
′ )

𝛾
𝛾−1

 

So, which gives us  

𝑝2 =
𝑝01

(
𝑇01

𝑇2
′ )

𝛾
𝛾−1

 

So  

𝜌2 =
𝑝2

𝑅𝑇2
 



So that is how we get the density. Now, from the area  

𝐴2 =
𝑚̇

𝜌2𝑉𝑧2
 

these are 2. So, this is an annulus area at plane 2. So the 

𝐴2𝑁 = 𝐴2 cos 𝛼2 

So, this guy is not because it is not a repeating stage.  

 

We are assuming that V1 is actual and this together with the assumption the other assumption that 

we have made here. So, at one or Vz1 is V1, which is V3. So, we get 

𝑇1 = 𝑇01 −
𝑉1

2

2𝐶𝑝
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And the relationship of  

𝑝1

𝑝01
= (

𝑇1

𝑇01
)

𝛾
𝛾−1

 

density we get  

𝜌1 =
𝑝1

𝑅𝑇1
 

and area  

𝐴1 =
𝑚̇

𝜌1𝑉𝑧1
 

Similarly, at 3 we gave  



𝑇03 = 𝑇01 − ∆𝑇0𝑠 

and  

𝑇3 = 𝑇03 −
𝑉3

2

2𝐶𝑝
 

So, P03 is now use the relationship of 

𝑝03 = 𝑝01

𝑝03

𝑝01
 

𝑝3 = 𝑝03 (
𝑇3

𝑇03
)

𝛾
𝛾−1

 

𝜌3 =
𝑝3

𝑅𝑇3
 

and area  

𝐴3 =
𝑚̇

𝜌3𝑉𝑧3
 

Now  

𝑈𝑚 = 2𝜋𝑁𝑟𝑚 

so we get 

𝑟𝑚 =
𝑈𝑚

2𝜋𝑁
 

So that is the mean radius that is what we can get.  

 

So, area would be  

𝐴 = 2𝜋𝑟𝑚ℎ =
𝑈𝑚ℎ

𝑁
 

And 

ℎ =
𝐴𝑁

𝑈𝑚
 

So the tip radius is 

𝑟𝑡 = 𝑟𝑚 +
ℎ

2
 

and root radius is  

𝑟𝑟 = 𝑟𝑚 −
ℎ

2
 

now all A1, A2, A3 all are calculated. So note that all the relationship we have derived well for  



𝑉𝑧2 = 𝑉𝑧3 

If  

𝑉𝑧2 ≠ 𝑉𝑧3 

Then 

𝑈

𝑉𝑧2
= tan 𝛼2 − tan 𝛽2 

and  

𝑈

𝑉𝑧3
= tan 𝛽3 − tan 𝛼3 

and  

𝜓 =
2𝐶𝑝∆𝑇0𝑠

𝑈2
=

2

𝑈
(𝑉𝑧2 tan 𝛼2 + 𝑉𝑧3 tan 𝛼3) 
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So also in the is the flare is not symmetrical. So, U must be replaced by Um2 and Um3. For this 

preliminary design we have taking losses into account via λ𝑁 and it is rather than λ𝑅 or λ𝑁. So, λ𝑁 

is implied by the design and λ𝑅 can now we now can be calculated so we get  

𝑇2

𝑇3
′′ = (

𝑝2

𝑝3
)

𝛾−1
𝛾

 

So, which means  

𝑇3
′′ =

𝑇2

(
𝑝2

𝑝3
)

𝛾−1
𝛾

 



So, for this preliminary design we have taken losses account buy NR 𝜂𝑠 other than λ𝑅 and V.  

 

Now  

𝑊3 =
𝑉𝑧3

cos 𝛽3
 

and  

λ𝑅 =
𝑇3 − 𝑇3

′′

𝑊3
2

2𝐶𝑝

 

typically λ𝑅 is greater than λ𝑁 due to duplicate loss in the rotor blades . So, this is how we get this 

done. Now the next is the vortex theory. So, what is that this is the next step in the design? So, to 

consider the 3D nature of the flow so far as it affects the variation of the gas angles with radius. 

So, this is to consider 3D nature of the flow second to consider the blade shapes.  

 

And that is also necessary to achieve the required gas angles and the effect of the centrifugal and 

gas bending stresses on design third to check the design by estimating λ𝑁 and λ𝑅 from the result 

of cascade test suitably modified to take account or take into account the 3D flows.  

(Refer Slide Time: 25:42) 

 
So, when we take the 3 dimensional effect considering radial equilibrium so, we have already seen 

in compression that 𝑈 = 𝑟𝜔. So, U goes up as rotational speed r goes up. So, to maintain a smooth 

flow the blade has to be twisted. So, the twisted blade required second twisted blading designed to 



take into account the changing gas angle which is called the vortex blading. Now, we can do free 

vortex design for stagnation enthalpy h0 is constant over the annulus which means  

𝑑ℎ0

𝑑𝑟
= 0 

The axial velocity is constant over the annulus and 𝑉𝜃 is inversely proportional to radius or 𝑉𝜃r is 

constant. So, with this assumption radial equilibrium condition is satisfied and this design is called 

the free vortex design. Now for nozzle the ℎ0 is constant at the inlet. Then it will be constant at the 

so for nozzle if ℎ0 is constant at inlet, it is constant at outlet, because no work is done in the nozzle. 

So, again if we design the nozzle blades such that Vz to his constant and 𝑉𝜃2𝑟 is constant.  

 

So, this means the radial equilibrium theory satisfied at station 2. Similarly, if rotor blades are 

designed in such a way that these 𝑉𝑧3 is constant and 𝑉𝜃2𝑟 into r is constant, then it also satisfied 

the radial equilibrium theory. So, it can be shown that h03 is also constant and hence radial 

equilibrium theory or radial equilibrium is satisfied at 3. So, what do we write, we write from 

angular momentum equation what do we write  

𝑊 = 𝑈(∆𝑉𝜃) 

which is known.  

 

So, you can write 

𝑊 = 𝑈(𝑉𝜃2 + 𝑉𝜃3) = 𝜔(𝑉𝜃2𝑟 + 𝑉𝜃3𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Now, also,  

𝑊 =  𝐶𝑝(∆ℎ0) 

So, if W is constant over r then ∆ℎ0 is constant over r. So, hence h03 is constant over r. So which 

tells me that h0 must be constant at inlet and outlet to. So, that is so to maintain these the h0 has to 

be constant at the inlet and at the outlet to so that this condition is satisfied A. So, this is what you 

get when you are talking about the free vortex  design. So we will stop it here and continue this 

discussion of the design in the next lecture. 


