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Okay so let us continue the discussion of the degree of reaction in axial flow compressor. 
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And this is what we stopped at that the different velocity triangle for different degrees of reaction 

and so these are one can see how the blade angles that varies for 0% degrees of reaction, 50% and 

100% and what would be the balding pattern or the angles that one get for the; so this is very 

important aspect of; when you look at the blade design and talking about the degrees of reaction 

because these are very important in the sense this dictate the rotor blade design and loading on 

rotor blade and things like that. 

 

So another thing just to note here is that we have assumed reversible work done in the stage, so 

work done factor is unity but due to the presence of irreversibilities actual degrees of reaction will 

differ from 0.5, okay. So for an axial compressor stage in which the change in density is small so 

this 𝛬 would be approximated as 

𝛬 =
𝑝2 − 𝑝1

𝑝03 − 𝑝01
 



so which is essentially the static pressure rise in the rotor by stagnation pressure rise in whole 

stage, okay. 

 

So this could be very easily shown, I mean it one can just do by assuming just like a flow is 

approximately isentropic in the rotor, so if you write the 

𝑇𝑑𝑠 = 0 = 𝑑ℎ −
𝑑𝑝

𝜌
 

 Now since 𝜌 is pretty much constant one can write 

𝑑ℎ =
𝑑𝑝

𝜌
 

ℎ2 − ℎ1 =
1

𝜌
(𝑝2 − 𝑝1) 

and similarly  

ℎ03 − ℎ1 =
1

𝜌
(𝑝03 − 𝑝1) 

so we can get a  

𝛬 =
ℎ2 − ℎ1

ℎ03 − ℎ01
=

𝑝2 − 𝑝1

𝑝03 − 𝑝01
 

okay, so which is that means the degrees of reaction can be also estimated.  
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Now we will move to another theory called the radial equilibrium theory. So, so far the dimensions 

were in mean radius, we have neglected the variation of the proportion but our 𝑈 = 𝜔𝑟 and our  

𝑉𝑧, 𝑉𝜃 𝑎𝑛𝑑 𝑝 depends on U through 𝛼. So all the parameters would be essentially all the parameters 

will be function of r. So 𝑉𝑧 is uniform that means radial at the inlet, so large variation can developed 

of sub-stages so 𝑉𝜃 would be function of 𝛼(𝑟) and P(r) would be function of 𝑉𝜃(𝑟)  or rather.  

 

So we can check this element for the radial equilibrium theory, okay. So this is dz, this is d𝜃, now 

this distance is r, this is 𝑉𝜃, that is 𝛿𝑚. So in a another schematic, if you look at in that viewpoint, 

so one can write this side is 𝑝 +
𝑑𝑝

2
, 𝑝 + 𝑑𝑝 this is P, this is d𝜃, so this distance would be r, okay. 

So we can find out this radial variation. Now consider a small fluid element, this is small fluid 

element of mass 𝛿𝑚 with tangential velocity component 𝑉𝜃.  

 

Now the force would be  

𝐹𝑟 =  𝛿𝑚 (
𝑉𝜃

2

𝑟
) 

Now from the force balance of this element which is here, we can write that  

(𝑝 + 𝑑𝑝)(𝑟 + 𝑑𝑟)𝑑𝜃 𝑑𝑧 − 𝑝𝑟𝑑𝜃 𝑑𝑧 − 2 (𝑝 +
𝑑𝑝

2
) 𝑑𝑟

𝑑𝜃

2
𝑑𝑧 = 𝜌𝑑𝑟 𝑟𝑑𝜃 𝑑𝑧 

𝑉𝜃
2

𝑟
   

okay. So essentially here the centripetal force is here we can write  

𝛿𝑚 = 𝜌𝛿𝑉 

𝛿𝑉 = (𝑑𝑟)(𝑟𝑑𝜃)𝑑𝑧  

So forces on the side faces in radial minus axial plane considering the average pressure. So once 

we simplify this we can write  

(𝑝 + 𝑑𝑝)(𝑟 + 𝑑𝑟) − 𝑝𝑟 − (𝑝 +
𝑑𝑝

2
) 𝑑𝑟 = 𝜌𝑑𝑟 

𝑉𝜃
2

𝑟
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So now further simplification would give  

𝑟𝑑𝑝 =  𝜌𝑑𝑟 
𝑉𝜃

2

𝑟
 

1

 𝜌

𝑑𝑝

𝑑𝑟
=  

𝑉𝜃
2

𝑟
 

so that is what your radial equilibrium equation, okay, so actual velocity distribution must satisfy 

this behavior, so this is important. 

 

Now one can again consider a special case. What it could be? Is that the any radial direction r the 

stagnation enthalpy is given by  

ℎ0 = ℎ +
𝑉2

2
= 𝐶𝑝𝑇 +

1

2
(𝑉𝑧

2 + 𝑉𝜃
2

) 

Now since  

𝑉𝑟 < 𝑉𝜃 & 𝑉𝑧 

what we can write 

𝐶𝑝𝑇 =
𝛾

𝛾 − 1

𝑝

𝜌
  

 so which turns out to be  

ℎ0 =
𝛾

𝛾 − 1

𝑝

𝜌
+

1

2
(𝑉𝑧

2 + 𝑉𝜃
2

) 



So once we differentiate this one with respect to r, what we will get? So before we do this another 

thing which one can write that the change in pressure is one stage is small. So change in pressure 

in one stage is small.  

𝑑ℎ0

𝑑𝑟
= 𝑉𝑧

𝑑𝑉𝑧

𝑑𝑟
+ 𝑉𝜃

𝑑𝑉𝜃

𝑑𝑟
+

𝛾

𝛾 − 1
[

1

 𝜌

𝑑𝑝

𝑑𝑟
−

𝑝

𝜌2

𝜌

𝛾𝑝

𝑑𝑝

𝑑𝑟
] 

Now this we write  

𝑑𝜌

𝑑𝑟
=

𝜌

𝛾𝑝

𝑑𝑝

𝑑𝑟
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So if you use that what we will get  

𝑑ℎ0

𝑑𝑟
= 𝑉𝑧

𝑑𝑉𝑧

𝑑𝑟
+ 𝑉𝜃

𝑑𝑉𝜃

𝑑𝑟
+

𝛾

𝛾 − 1
[
𝛾 − 1

𝛾𝑝

𝑑𝑝

𝑑𝑟
] 

𝑑ℎ0

𝑑𝑟
= 𝑉𝑧

𝑑𝑉𝑧

𝑑𝑟
+ 𝑉𝜃

𝑑𝑉𝜃

𝑑𝑟
+

𝑉𝜃
2

𝑟
 

So this is another way one can find out. Now let us assume apart from the regions near the walls 

of the annulus the stagnation enthalpy or other temperature will be uniform across the annulus 2 

into 2 compressor. 

 

So what that happens  

𝑑ℎ0

𝑑𝑟
= 0 



 since flow is axial or rather predominantly axial, so small variation in radial direction, so that 

means constant work input and all radial hence h naught will progressively increase in axial 

direction. So this is  

𝑉𝑧

𝑑𝑉𝑧

𝑑𝑟
+ 𝑉𝜃

𝑑𝑉𝜃

𝑑𝑟
+

𝑉𝜃
2

𝑟
= 0 

So again special case if 𝑉𝑧 is maintained constant across the annulus there then we can write  

𝑑𝑉𝑧

𝑑𝑟
= 0 

so which get us back from here is that  

𝑑𝑉𝜃

𝑑𝑟
= −

𝑉𝜃

𝑟
 

So which means  

𝑑𝑉𝜃

𝑉𝜃
= −

𝑑𝑟

𝑟
 

so that gives here 𝑉𝜃𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 after integration, so which means tangential velocity is 

inversely proportional so 𝑉𝜃 would be inversely proportional to the r so condition known as free 

vortex, constant work input all radials, constant Vz all radials, free vortex variation of tangents and 

velocity. So these are the situation so that means constant work input at all radials, constant Vz at 

all radials, free vortex variation of tangential velocity. So these are all satisfying, so this satisfies 

radial equilibrium. Also this 𝑉𝜃 into r constant also satisfies the radial equilibrium. 
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Now what important is that when we have free vortex design this requires large blade twist. So 

this requires large blade twist in order to maintain 𝑉𝜃 ∗ 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, so that means high 

structural stress which may lead to blade failure, large absolute velocity in the rotor exit so that 

could be another issue so that means small pressure rise in rotor which means small degrees of 

reaction but widely used though in axial turbines, so free vortex design widely used in axial turbine 

compared to compressor.  

 

Now with that note we will move it move to the different kind of efficiencies that one can define 

for compressor. So there are three different kinds which actual and ideal work one can do one is 

the stage efficiency which is 𝜂𝑠𝑡 which is ideal work done divided by actual work done in a stage, 

so that one can write  

𝜂𝑠𝑡 =
ℎ3𝑠 − ℎ01

ℎ03 − ℎ01
 

Second it could be adiabatic efficiency which is 𝜂𝑐 again idle work done divided by actual adiabatic 

work done for whole compressor, okay. So this was discussed in already in cycle analysis. 

 

So this differs significantly, so differs from stage efficiency, third could be polytropic compression 

efficiency which is 𝜂𝑝𝑐 that means idle work done divided by actual work done for an infinitesimal 

step in compression air and process, so this is typically your stage efficiency maybe with the 

polytropic efficiency. So we can always find out a relationship between 𝜂𝑝𝑐 and 𝜂𝑐. 
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So let us consider a TS diagram; this is stage so goes from here to there let us say P0, this would 

be P0+dP0, okay so that is 𝑑𝑟0, 𝑑𝑇0𝑠 , so there is an incremental pressure rise from 𝑝0 to 𝑝 + 𝑑𝑝0 

so my  

𝜂𝑝𝑐 =
𝑑𝑇0𝑠

𝑑𝑇0
 

so we are trying to find out the relation between 𝜂𝑝𝑐 and 𝜂𝑐. Now for isentropic process what will 

happen 

𝑇02𝑠

𝑇01
= (

𝑝02

𝑝01
)

𝛾−1
𝛾

 

𝑇02𝑠 − 𝑇01

𝑇01
= (

𝑝02

𝑝01
)

𝛾−1
𝛾

− 1 

So 

𝑑𝑇0𝑠 = 𝑇0 [(
𝑝0 + 𝑑𝑝0

𝑝0
)

𝛾−1
𝛾

− 1] 

𝑑𝑇0𝑠 = 𝑇0 [(1 +
𝑑𝑝0

𝑝0
)

𝛾−1
𝛾

− 1] 

 now if we use the binomial expression for  

(1 +
𝑑𝑝0

𝑝0
)

𝛾−1
𝛾

= 1 +
𝛾 − 1

𝛾

𝑑𝑝0

𝑝0
 



𝑑𝑇0𝑠 = 𝑇0 [1 +
𝛾 − 1

𝛾

𝑑𝑝0

𝑝0
− 1] 

𝑑𝑇0𝑠 = 𝑇0

𝛾 − 1

𝛾

𝑑𝑝0

𝑝0
 

𝜂𝑝𝑐𝑑𝑇0 = 𝑇0

𝛾 − 1

𝛾

𝑑𝑝0

𝑝0
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Now when the compressor between two stagnation stages of one and two if 𝜂𝑝𝑐 and 𝛾 constant 

then this  

𝑇02

𝑇01
= (

𝑝02

𝑝01
)

𝛾−1
𝛾 𝜂𝑝𝑐

 

so  

𝜂𝑐 =
ℎ02𝑠 − ℎ01

ℎ02 − ℎ01
=

𝑇02𝑠 − 𝑇01

𝑇02 − 𝑇01
=

𝑇02𝑠

𝑇01
− 1

𝑇02

𝑇01
− 1

 

so we get  

𝜂𝑐 =
(

𝑝02

𝑝01
)

𝛾−1
𝛾

− 1

𝑇02

𝑇01
− 1

=
(

𝑝02

𝑝01
)

𝛾−1
𝛾

− 1

(
𝑝02

𝑝01
)

𝛾−1
𝛾 𝜂𝑝𝑐 − 1

 



now this is for the relationship between adiabatic efficiency and polytropic efficiency. Now 

typically  𝜂𝑐 <  𝜂𝑝𝑐, so the difference increases with the increase in 
𝑝02

𝑝01
. 

 

So with this; if there is an increase in pressure ratio the differences also increases, for low pressure 

ratio  𝜂𝑐 is pretty much equal to the polytropic efficiency which would be also same for stage 

efficiency. So this is an important conclusion or rather important information that one should keep 

in mind is that when you have a low pressure ratio then these three different efficiencies which we 

have got here stage efficiency, adiabatic efficiency or polytropic efficiency they turn out to be 

same. 

 

So one can look at the textbook like Hill Peterson or any other textbook for this proof for low 

pressure. But here adiabatic efficiency would be lower than the polytropic efficiency and this; 

typically, this is what happens but this difference between the adiabatic efficiency and polytropic 

efficiency will increase with the increase in pressure ratio. So if the pressure ratio actually increases 

then this difference also increases. So we will look at the other relationship in the subsequent 

lecture and we will stop it here. 


