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Piston Engines and Propellers (Contd.,) 

 

So, let us continue the discussion with the design now, so we have looked at different kind of 

propeller and how they look like, their nomenclature, now we will go down to slightly different 

aspect of it like how aerodynamically these are designed.  
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So, let us look at the aerodynamic design and that is done through different theory, so let us 

start with the axial momentum theory or so we will start with axial momentum or this is called 

actuator disk theory, okay, so we will start with that. So, actuator disk is also sometime denoted 

as this actuator disk also called the Rankine Froude or slipstream theory, so these are different 

naming which are given. 

 

So, on 18; based on 1865, so the actuator disk theory replaces the propeller with the infinitely 

thin plane or actuator disk, so let us see how it can be done. Let us draw some configuration 

here, so let us say this is the actuator disk sitting there, then the flow could be like this, could 

be like this, then this goes like this, so let us say this is the actuator disk sitting there. Now, this 

is 1, so that is 2, this is the disk, this is T, 3, so this is a stream tube, so that is 4. 

 



And if we plot this, so now this could be v, then this is v(1 + a), v(1 + b), this is velocity, then 

we can see the similarly pressure, this is Pa, this is P2, this is Pa, so this is P3, so and if we plot 

that in a slightly 3 dimensional way, then it looks like here is the disk sitting there and so this 

is what v1, P1, let us say this is area A1, this is 2, 3, so P2, P3, A2, v2, v4, P4, area 4, 4, so that is 

the thin disk kind of now which imparts a certain momentum to the fluid passing through it, 

when there is this actuator disk. 

 

Now, this theory provides an initial idea regarding the performance of the propeller and also 

its efficiency but it cannot provide you the detailed design related aspect, so there are certain 

assumption in this particular approach; one is the fluid is 1 dimensional, incompressible, then 

perfect, isentropic. Second flow has uniform properties across the that is velocity and pressure 

across any plane normal to the flow except for the discontinuous jump in pressure across the 

disk itself. 

  

So, uniform property that is another, third is the rotation neglected that means, the rotation 

imparted to the flow is also neglected, fourth the streamlines all the edge of the disk define the 

outer limit of the contracting stream tube which passes through the disk and separates it from 

the surroundings okay. So, that means the stream tube provides the boundary, so in the stream 

tubes also a cylindrical section in both for upstream and for downstream. 

 

And then fifth is the flow outside the propeller stream tube has constant stagnation pressure, 

no work is; so outside propeller stream tube has constant stagnation pressure, so this particular 

diagram provides you some pressure velocity diagram, so one is far stream here, far stream 

from the propeller to just in front of the propeller, so let us say, 2 is here, then 3 is here which 

is just after the propeller, 4 is again further downstream of the propeller. 

 

So, the distance between 2 and 3 is infinitesimal because the disk is thin and this is what is 

assumed to be, now also the stream tube along the stream tube sections 1 and 4, the velocity 

increases from the free stream value of V1 at cross sectional area A1 to the area A4 and V4. So, 

the static pressure at station 1 and 4 could be P1 and P4, so which are atmospheric that means, 

P1, P4 it would be P atmospheric. 
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But the pressure difference across the disk is built up and so what we can write, so velocity at 

disk we can write 𝑉2 = 𝑉3, so which is written as 𝑉2 = 𝑉1(1 + 𝑎) where 𝑎𝑉1 = 𝑉2 − 𝑉1 is the 

increase in velocity through the disk, where a is called the axial inflow factor, okay. So, now if 

we have fully developed slipstream, the velocity 𝑉4 = 𝑉1(1 + 𝑏), where 𝑏𝑉1 = 𝑉4 − 𝑉1 

 

So that is the increase in velocity there and b is called the slipstream factor, so what we can get 

that  

𝑎 =
𝑉2 − 𝑉1

𝑉1
 

𝑏 =
𝑉4 − 𝑉1

𝑉1
 

so you can estimate the thrust, so we can apply Newton's motion and there is a region, control 

region between 1 and 4, the thrust could be  

𝑇 = �̇�(𝑉4 − 𝑉1) 

Now, let us say if we drop the subscript on the free stream velocity V is V1, then we can write 

this one is  

𝑇 = �̇�[𝑉(1 + 𝑏) − 𝑉] = �̇�𝑏𝑉 

Now, here m dot is the mass flow rate or mass flow through the actuator disk and also we can 

write that  

�̇� = 𝜌𝐴𝑉2 = 𝜌𝐴 𝑉(1 + 𝑎) 

Now, when I plug this back together, so this will give me  

𝑇 = 𝜌𝐴𝑉2(𝑉4 − 𝑉1) =  𝜌𝐴 𝑉2(1 + 𝑎)𝑏 

Now, force balance across the disk require that T would be  



𝑇 = 𝐴 ∙ ∆p 

so this is from that figure that we have drawn. 
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And where 

∆p = 𝑝3 − 𝑝2 

now if we eliminate T, we get  

∆p =  𝜌𝑉2(1 + 𝑎)𝑏 

now we have assumed the flow is incompressible, so the Bernoulli's equation applied between; 

now we apply Bernoulli's equation between 1 and 2, we write  

𝑝𝑎 +
1

2
 𝜌𝑉2 

𝑝2 +
1

2
 𝜌𝑉2(1 + 𝑎)2 

Now, similarly we apply the Bernoulli's equation between 2 and 3 and 4 that gives me  

𝑝3 +
1

2
 𝜌𝑉2(1 + 𝑎)2 = 𝑝𝑎 +

1

2
 𝜌𝑉2(1 + 𝑏)2 

So, what we get that  

𝑝3 − 𝑝2 = ∆p =
1

2
 𝜌𝑉2(1 + 𝑏)2 −

1

2
 𝜌𝑉2 =  𝜌𝑉2𝑏(1 +

𝑏

2
) 

so that is what you get as ∆p. Now, if we eliminate ∆p from this equation and this equation, 

we get  

1 + 𝑎 = 1 +
𝑏

2
 

so that means  



𝑎 =
𝑏

2
 

𝑏 = 2𝑎 

 

So, one can prove that  

𝑉2 =
𝑉1 + 𝑉4

2
 

Now, if you have no forward velocity or rather zero forward velocity should be  

𝑉1 = 0 

then  

𝑉4 = 2𝑉2 

when the forward velocity is 0. So, this looks quite simple but important result means that any 

speed including 0, one of the final increase in velocity in the slipstream has already occurred 

at the rotor itself.  
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So, now going back to the that thrust expression where we have written  

𝑇 = 𝜌𝐴 𝑉2(1 + 𝑎)2𝑎 =  𝜌𝐴𝑉2(1 +
𝑏

2
)𝑏 

now this equation is an quadratic equation, so if we solve, after solving what we get 

𝑎 = −
1

2
± √(

1

2
)

2

+
𝑇

2 𝜌𝐴𝑉2
  

Now, let us say v; if we say this is induced velocity at the propeller disk and can be written as 

 



𝑣 = 𝑎𝑉 = −
𝑉

2
± √(

𝑉

2
)

2

+
𝑇

2 𝜌𝐴
 

Also we get  

𝑏 = −1 ± √1 +
2𝑇

 𝜌𝐴𝑉2
 

now again we denote  

𝑤 = 𝑏𝑉 = −𝑉 ± √𝑉 +
2𝑇

 𝜌𝐴
 

 and this one is the induced velocity for downstream the propeller disk, so we get all these 

details that we wanted to calculate.  

(Refer Slide Time: 17:56) 

 

So, now we can look at some other factors like propulsion efficiency or propulsive efficiency, 

so that is 𝜂𝑝 and that is defined as 

𝜂𝑝 =
𝑝𝐴

𝑝
=

𝑇𝑉

𝑝
 

 and where 𝑝𝐴 is the thrust power or useful thrust power which is TV, this is the or sometimes 

called the available power and this is the P is the power delivered, so this is a ratio between 

available power to the power delivered is the propulsive efficiency. 

 

Now, for the actuator disk model, this efficiency is an ideal propulsive efficiency because it 

ignores all losses except the associated stream wise kinetic energy, so what we have the useful 

power is  



𝑈𝑠𝑒𝑓𝑢𝑙 𝑝𝑜𝑤𝑒𝑟 = 𝑇𝑉 =  𝜌𝐴𝑉3(1 + 𝑎)2𝑎 

Now, the power expended on the air which is also P which is also rate of change of kinetic 

energy okay, so that becomes  

𝑃 =
1

2
�̇�[𝑉2(1 + 𝑏)2 − 𝑉2] =  𝜌𝐴𝑉3(1 + 𝑎)22𝑎 

So, this ratio of these 2 powers for the ideal actuator disk model is called the ideal Froude 

efficiency that is  

𝜂𝐹 =
1

1 + 𝑎
=

𝑉1

𝑉2
=

𝑉

𝑉 + 𝑣
 

so this proves that higher efficiency of propulsion can be achieved by large rotor with very 

small increase in the fluid velocity so, achieving thrust by large surfaces rather than velocity. 

 

So, ideal Froude efficiency 𝜂𝐹 is always greater than actual propulsive efficiency, so that is 

what it is always like that now, we will go to another theory which is called a simple vortex 

model. 
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So, this is a sort of an modified actuator disk, now a practical assessment of the propeller 

performance and the design, so we can consider a stream tube that passes through a radius R 

and which is shown here, so there is a propeller disk and there is a stream tube the 

corresponding angular speed at this blade is let us say angular speed that is omega R, so this is 

the angular speed of the propeller, R is the local radius of the propeller. 

 



When fluid passes through this propeller through the propeller section, it occurs an angular 

speed due to the swirling because this is called so called simple vortex model, so then the 

rotational speed at the propeller section would be  

𝑢 = 𝑎𝛺Ω𝑟 

where 𝑎𝛺 is the angular induced factor, okay. So, the local flow velocity just downstream of 

the propeller can be estimated which is like let us say  

𝑉𝑅 = √𝑉2
2 + 𝑢2 = √𝑉1

2(1 + 𝑎)2 + (𝑎𝛺Ω𝑟)2 

So, the local flow velocity for downstream, so the local flow velocity for downstream of the 

propeller can be found as  

𝑉𝑅
′ = √𝑉4

2 + 𝑢2 = √𝑉1
2(1 + 𝑏)2 + (𝑎𝛺Ω𝑟)2 

Now, that is what you get, so this is where the 𝑉𝑅 and u and 𝑉2. Now, the let us say at radius r, 

the local propulsive efficiency based on modified momentum theory. 

 

This is the, so this is called the modified momentum theory or this is what exactly the simple 

vortex theory, so sometimes it is called the modified momentum theory or simple vortex theory, 

so it based on that.  

𝜂𝑚𝑚 =
𝑇𝑉1

𝑇𝑉1 + (𝐾𝐸)𝑙𝑜𝑠𝑠𝑒𝑠
 

so which we can write that  

𝜂𝑚𝑚 =
�̇�(𝑉4 − 𝑉1)𝑉1

�̇�(𝑉4 − 𝑉1)𝑉1 +
1
2 �̇�(𝑏2𝑉1

2 + 𝑢2)
 

okay. 

So, this one can be further simplified and one can write this could be  

𝜂𝑚𝑚 =
𝑏𝑉1

2

𝑏𝑉1
2 + (

𝑏2𝑉1
2 + 𝑢2

2
)

 

so what we can write is  

𝜂𝑚𝑚 =
1

1 +
𝑏
2 +

𝑢2

2𝑏𝑉1
2

 

okay, which one can write  

𝜂𝑚𝑚 =
1

1 + 𝑎 +
𝑢2

4𝑎𝑉1
2

 



So, finally this one if we replace it back, then we can write that let us write it here that  

𝜂𝑚𝑚 =
1

1 + 𝑎 +
(𝑎𝛺Ω𝑟)2

4𝑎𝑉1
2

 

So, this is what one can get with the modified momentum theory or simple vortex model, so 

you can see that either one can do the analysis with like an actuator disk theory, this is one of 

the simplest way one can do the design simple vortex model or modified momentum theory to 

get this efficiency and other stuff. So, there are 2 different way you can look at it these are the 

again the simple theories which are used to calculate this actuator disk analysis. 

 

But these are again assuming that these to be thin and then carrying out this analysis but one 

can always look at these blades and the detail analysis either put it in the wind tunnel or 

somewhere by doing testing or sometimes doing the computational approach, where you can 

calculate all this numerically and look at the flow field around it. So, we will stop this 

theoretical discussion here then continue some of the part in the next class. 


