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Ok, welcome back. Now, second method that we can talk is the Gauss Seidel method, so

that is the second one. And if one can see, so this is another popular method which can

be slightly better than Jacobi because it has better convergence criteria or characteristics

our Jacobi, and also it uses less memory. So, memory wise also it is less expensive.

And if you see how things done this is the box, you have you are trying to find out at this

level, then this minus this. So, this will have some sort of and these things phi n minus

some sort of this phi n minus 1, so that is how graphically it can be represented. And but

finally, the equation that we are solving for is  phi equals to b.  So, if  you write that

mathematically at nth level phi i equal to 1 by a i i b i minus summation of j 1 to i minus

1 a i j phi j minus j equals to i plus 1 to n, a i j. So, i goes from 1, 2 to N.

Now, this expression this is in indicial notation. If you convert that one to a matrix form,

one can write this equals to minus D plus L inverse multiplied with upper triangular phi n

minus 1 plus D plus L inverse into b. So, this is what one can write. So, the effect of

Gauss-Seidel method uses the most recent values in a situation. Specially if you look at



phi j at nth level, when the j is less than i, since by the time phi i is to be calculated the

value of phi 1 to phi i minus 1, they are used which are the most recently calculated in

the ongoing iteration. 

So,  this  approach  also  saves  lot  of  memory  that  is  why  it  can  be  quickly  or  less

computationally  expensive,  but  other  criteria  like  the  spectral  radius  that  must  be

satisfied for this iterative matrix which is this, it is less than 1. So, some cases obviously

when  we  say  this  still  there  could  be  some exceptional  cases  where  Jacobi  method

converges faster, Gauss-Seidel is the preferred one, so that is also possible.
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Now, we move to an important topic which one needs to know while talking about the

iterative  process  is  the  preconditioner  or  preconditioning,  and  associated  iterative

methods,  so  that  is  one  thing.  So,  what  happens  preconditioning  why  do  use

preconditioning, because that the rate of convergence of the iterative methods heavily

depends on the spectral properties of the radius of the iteration matrix B.

So, the depends or the dependency, dependency on rho B that is a heavily depended. So,

what makes it is so that the iterative method can be I mean defined in a better way where

you can actually improve its convergence level. So, in that way the it can be transform to

a equivalent system. So, essentially the iterative matrix can be transform to equivalent

system and then the equivalent system can be solved or the transform system, so that is

where the preconditional comments the picture. 



So, preconditioner is such matrix which actually effects the transformation of the system.

So, P is defined as a preconditional matrix, one can defined as P A inverse phi equals to P

inverse B. So, what we are doing we are solving for the equation A phi equals to B, and P

is a pre conditioning matrix. So, once you multiplied with that P inverse the both the side

of this equation, you get this one. 

Now, this guy will have the same solution as the A phi equals to B. But the spectral

properties of this iterative matrix that is P inverse A, they are different. And in defining

the  preconditional  P, the  difficulty  is  to  find  out  that  approximation  approximate  A

inverse and but it is easy to convert to find P inverse at a reasonable cost. So, we will

write the equation, this equation will start with our iterative equation phi n equals to B

phi n minus 1 plus c b that is our starting point of the iterative equation.

Now, what you will do, we will replace P or P replacing by M and A equals to P minus N.

So, what will do we will now with P replacing M, and A equals to P minus N, so that

means, basically what we are saying that M equals to P and A equals to P minus N. So,

once we use that for the fixed point iteration equation, this equation look like that B phi

to the power n minus 1 plus c b which is P inverse N phi N minus 1 plus P inverse b.

Now, this is P inverse P minus A, so this becomes phi n minus 1 plus P inverse b. So, this

one can write that identity matrix minus P inverse A phi n minus 1 plus P inverse b.
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So, so residual form one can write that and that can be written as phi n equals to I minus

P inverse A phi n minus 1 plus P inverse b which will be phi n minus 1 plus P inverse b

minus it would be a phi n minus 1. So, essentially what we are doing from this step to

this step, we just rearranging the stuff. This is identity matrix multiplied with the n minus

1 level of variable, and then you take P inverse in that side. So, this will become like this

which one can rewrite phi n minus 1 plus P inverse r to the power n minus 1. Here r is

the residual vector which is b minus A phi. 

Now, from this equation one can see that the iterative procedure is just a fixed point

iteration on a precondition system associate with the decompositions, where A equals to

P minus N, where the spectral properties now would be on rho I minus P inverse A which

must be less than 1. So, this is the property one has to satisfy.

Now, if  you compare this  precondition system with two other methods that  we have

discussed, one is the Jacobi and other case is the Gauss-Seidel. So, if you compare these

two with this precondition system, one can immediately see for Jacobi method the P is

equivalent to your diagonal matrix and Gauss-Seidel P is nothing but your diagonal plus

lower triangular system so that is the equivalence you one can see. That means, when

you define a precondition system, the precondition system can be also used for the Jacobi

method and other methods. 

So, here the D is the diagonal matrix, L is the lower triangular part of the matrix. So,

essentially what one can say that preconditioning is a manipulation of the original system

to improve its  spectral  radius  as  we have seen with the help of  this  preconditioning

matrix P used for the associative iterative process. So, one can develop different kind of

preconditioning matrixes in which the coefficients are quite complex one. 
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Now,  the  other  think  one  needs  to  know  that  the  matrix  decomposition,  matrix

decomposition technique. So, why we need to decompose the matrices, that reason is that

one can accelerate so to accelerate the convergence rate of the iterative process. So, the

decomposition helps in turn to promote the convergence rate of the solver. Also to some

extent  use or  adopt  advanced pre-conditioners.  So,  we have  all  ready seen  that  pre-

conditioners  helps to get in slightly better  convergence because of the change in the

spectral properties of the system.

So,  simple,  but  yet  an  very  efficient  approach  for  the  purpose  is  to  perform  the

incomplete factorizations of the original matrix so which call the so there are couple of

issues  which  are  very  very  important  or  for  the  iterative  process  is  that  one  has  to

improve the convergence rate because it then only you can have faster calculation to be

done, and also if you can adopt a advanced level of pre-conditioners. So, and the simple

way to that how you decompose the system in incomplete factorizations or the first one

we call incomplete L U decomposition. 

So, some other way it is known as I L U. So, this is what so L here again stands for lower

triangular matrix, U stands for upper triangular matrix, and I is the identity matrix. So,

one can incomplete ILU factorization of a and the system that we are solving for is the

same A phi equals to b is performed such that the resulting lower and upper matrices of

the same nonzero element.



So, the way this incomplete factorization is done from the, from A to this that they have

same number of nonzero structure at the lower and upper half. So, the A can be written as

L U plus R, where R is the residual of the factorization process. So, the matrices L and U

they are also L, U they are also sparse. So, they are being spares are easier to deal with

and  their  obtained  from  a  complete  factorizations.  But  the  product  being  an

approximation to A which will also necessitate to use an iterative solution procedure for

this system.

And the first step towards that would be writing this original equation in such a form that

0 is b minus A phi which will also lead to A minus R phi equals to A minus R phi plus b

minus A phi.  So,  now if  you get this  calculation  for different  iterative level,  so that

means, nth level n plus 1th level n minus 1th level like that, first, second, third iteration, I

can write A minus R phi to the power n equals to A minus R phi to the power n minus 1

plus b minus A phi to the power n minus 1, so that is what I get.
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Now, this if you now you can find out at the iteration level n using the value of n minus 1

such that phi n equals to phi n minus 1 plus some sort of n phi prime n which is nothing

but some kind of a correction factor which are being used.

Now, the previous equation becomes A minus R phi n equals to or phi prime n equals to

b minus A phi n minus 1. Once you get phi prime n, then you can use that value to update

the phi n. The ILU factorization can be performed using so this you can perform using



Gauss  elimination  process  while  some  dropping  of  diagonal  elements  at  different

locations.

So, you see what we have discussed for the direct method like Gauss elimination or the

LU  factorization,  they  are  now  again  coming  back  for  the  discussion  or  under  the

discussion of the iterative process, and they play an I mean critical role here. Because

once you try to do ILU factorization, you can use the Gauss elimination process. 

Now, one also can do the incomplete factorizations like incomplete ILU with no fill in,

that means, which is ILU 0. This is a typical terminology which is used to demonstrate

the incomplete LU factorizations with 0 fill or no fill. So, there are different variations of

the ILU factorizations which exist in the literature. So, again this is the simplest of the

lot. 

So, what happens in ILU 0, ILU 0, the pattern of zero elements in the combined L and U

matrices is taken to be precisely the pattern of zero elements in the original LU matrices

in the original A. So, Gaussian elimination or can be performed in the case of full LU

factorizations.  But  in  any nonzero  elements  exist;  there you cannot  use  that  kind of

Gaussian elimination. Hence, the combined L U matrices combined LU matrices have

together the same number of nonzero at the original matrix A.

So, with this  particular  approach,  what one can do with that the filling problem that

usually arises when factorizations of the sparse matrices takes place, so that in those non

zero elements are location with the original matrices has zeros, they can be avoided. So,

in  the  process  the  accuracy  is  reduced,  thereby  increasing  the  number  of  required,

number  of  required  iteration  for  the  convergence  number  of  required  iteration  for

convergence also high to remit to this what coming for more accurate ILU factorization

methods which are often more efficient and more reliable.  So, these are the different

blames of ILU factorizations which are devised.

And there  are  what  you do  in  that  ILU0,  factorizations  assume L to  be  unit  lower

triangular matrix for which the same A used, A is used to store the elements of their unit

lower  and  upper  triangular  matrices.  And  L  and  U  can  be  written  in  that  kind  of

approach.
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Also in this I L U factorization of the symmetric, so if you do this for symmetric positive

definite matrices, so if it is symmetric positive it should be mentioned that if you are that

the ILU decomposition of symmetric positive definite matrices is denoted by incomplete

Cholesky  factorization  which  is  called  Cholesky  factorisation.  In  this  case,  the

factorizations is done such that L bar L bar transpose equals to A where, L bar is the

factorized sparse lower triangular matrix ok.

And pre-conditioner which is given as P equals to L bar L bar transpose equivalent to A,

where P is the pre conditioning matrix. Now, that is for a very specific case if you have a

symmetric positive definite matrices. Now, if you put the algorithm for ILU 0, what one

has to do? This is for ILU 0. You go for a loop where k equals to 1 to n minus 1, first

loop starts, then the second loop you go I equals to k plus 1 to n. And you check if a i k

not equals to 0, then you do the following. You calculate a i k equals to a i k divided by a

k k which is the lower values.

And then you go for another loop for j goes from k plus 1 to n, and if a i j not equals to 0,

you do the following calculation for a i j which is essentially a i j minus a i k multiplied

with a k j which is the upper values, upper this is essentially the lower. And that brings

back to the closer of first this loop, and then you close back this loop, and finally, you

close down the third one, so that is the essentially the ILU 0 decomposition algorithm

which you can use. 



And so what essentially do you go from this loop k equals to 1 to n minus 1, then the

second loop you check this criteria. This is a very important criteria if this is not satisfied

even then you go what this so you are going over the loop, but checking this criteria if

this particular criteria is satisfied, then only you do this calculation to obtain the lower

values of the system.

And then in the second level of iteration you check these criteria. If that is satisfied, then

you finally calculate the upper values. Here U stands for the upper value; L stands for the

lower  values.  And  then  you  close  this  loop.  So,  this  is  how  you  get  the  ILU  0

factorizations. So, we will stop here today. And in the subsequent lecture, we will discuss

the other variant of the iterative process.

Thank you.


