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So, welcome to the lecture of this Finite Volume Method. So now, we will move to the

second part of it this discretization process.

(Refer Slide Time: 00:23)

So, once you go there, then we will look at the discretization process. Now what we talk

in  the discretization  process?  So,  essentially  in  the  discretization  process  we will  be

talking on modeling of the geometric domain and the physical problem of interest that

essentially again coming back to your calculation of the safety related work, that when

you have a problem in hand, how do you convert them to the mathematical problem or

the  linear  system.  And finally,  get  the  solution.  So,  there  we will  be  discussing  the

geometric domain and physical domain.

So, one is the geometric domain is the physical problem that it will represent and the

physical phenomena of interest; that means, it could be flow through channel it could be

flow around your  automobile  vehicle.  It  could  be flow through (Refer  Time:  01:24)

anything. So, one case it is as a bifurcation of geometric domain and then the physical

problem. Then you need to discretize the geometric domain into grid or mesh so, this is



one very important point. That means, once I have a geometric domain in hand, so I need

to make them infinite number of grid or we sometime call it as mesh so, over which we

will have the solution.

Then you actually discretize the numerical equation to get a linear system. So, this is

where  your  physical  problem of  interest  through  the  mathematical  technique  getting

transfer to a linear  system. When is you get transferred to a linear system you get a

solution of the linear system.

(Refer Slide Time: 02:32)

So, essentially this is the solution that you are looking for of a linear system. So, in the

discretization  process,  we will  see how a physical  problem is  transferred  to  a  linear

system. Now if you look at the problem, so essentially one hand you have this physical

problem, and this is the physical phenomena. So, once you have physical problem in

hand, so the physical problem does not come without a physical phenomena.

So, that means, if I have a flow through a channel the physical domain is the channel and

the physical phenomena is the flow which is going through the channel.  Now this is

physical domain will have a domain modeling, and the physical phenomena will have a

physical modeling. So, physical modeling means essentially you are going to have the set

of  governing  equation  or  the  physical  equations  that  will  actually  represent  these

physical process, ok. So, this will actually take care of the governing equations. Now that



will  lead  to  a  set  of  governing  equations  defined  on  the  computational  domain  or

computational grid or mesh whatever you call it.

So, essential the physical problem, now getting transferred to a computational system;

now you have again to set of system: one hand you need to discretization domain, this is

called the domain discretization. That means, if I have a channel like this. So, I have to

discretize this one. And the domain discussion will lead to a different kind of grid, and

that we have already talked in our previous lectures, that what kind of grid you end up

with, it could be structure grid, it could be block structure grid, it could be unstructured

grid.  And  then  you  have  governing  equations  which  actually  you  discretize  through

different schemes, ok.

Then you get to the linear system; which is Ax equals to b. And then finally, you have a

different solution method. So, solution method could be multiple,  because how I can

solve this linear system, it could be direct solver or it could be linear solver non-iterative

solver so it could be iterative solver. Then once you get the numerical solution that will

actually  represent  your  physical  phenomena,  ok.  So,  this  is  how you get  the  system

going.
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Now, you have an take an example and see how things actually move on. So, here is a

base of heat spreader. This portion is the heat sink and this is another patch there. So, it is

a essentially a microprocessor. Now if you look at the domain modeling.  So, domain



modeling if you look at it so this is the how you look the domain modeling. This is my

microprocessor, this is my heat sink, and this is the heat spreader base. Essentially the

heat spreader base is a kind of an l shaped base where I have a heat sink, where I have a

microprocessor.

What  does  my physical  modeling  do?  Physical  modeling  essentially  talks  about  my

governing  equations  or  the  equations  that  represents  the  phenomena.  So,  physical

modeling  essentially  does  that;  that  means,  I  come up with  the  equation  which  can

represent this physical process. So, if you look at this heat spreader base, one and I have

a sink that means, it is going to be the energy absorber, then I have a microprocessor with

might  be  generating  the  heat.  So,  I  will  be  essentially  solving  a  steady  state  heat

conduction equation with a heat generation term. Why there is a heat generation term?

Because the microprocessor sitting in this heat spreader base it is going to be; so this is

going to be the heat generator and this is going to be the heat sink.
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So, both the condition is there so, I have to solve that now any come down to the domain

discretization, how do you discretize these things? So, that spreader base is discretize

with some sort of a finite elements or the some structured elements or control volumes.

So, these are individual control volume. So, you define them in a regular control volume,

and this is a patch, this patch is nothing but my heat sink, and this is patch 3 which is the

microprocessor this would be heat source, ok.



Now, equation discretizations I have the governing equations with source term. So, I

have a unsteady term and convection term, diffusion term, these term, but in these case it

is a steady state case. So, that I do not have any contribution from this term. So finally, it

comes down to a some sort of this is a algebraic equation, ok. And if you look at that this

should be put together in this kind of a matrix form, and this is in a particular one control

volume which can represent through these kind of estimate.

(Refer Slide Time: 08:30)

Now, if you look at the complete picture, here this is my problem of interest, where I

have a spreader base, I have a microprocessor which is actually heat generator I have a

heat sink.

Then domain discretization actually take care of the whole domain. Physical modeling

actually gives back to my equation. Finally, domain discretizations takes into account the

control volumes, then you come down to a linear system, and you get a solution which

will be the physical phenomena. So, that is how the whole process actually works.



(Refer Slide Time: 09:21)

Now if  you look  at  the  geometry  or  physical  modeling;  so,  geometric  and  physical

modeling what we are doing this. This actually want it simplifies the system then it takes

care  the  governing  equations;  that  means,  the  PDEs  which  represent  the  physical

phenomena, ok. So, that is what we do.

I mean this case you have a steady state heat conduction equation with a source term this

is  my PDE. So, first  step is the geometric  and physical  modeling.  So, the geometric

modeling we identify heat source. We identify heat sink and define the other domain

constraints. And the physical modeling will get back to the equations. Now the second

step would be the domain discretization.



(Refer Slide Time: 10:43)

How do we do the domain discretization. Now the second step is very important in the

sense how you look at the system or you discretize the domain. So, this is my complete

spreader base, this is a L shaped base this.

This portion is the heat sink. So, I have a boundary condition of T sink, this is the heat

generator of the microprocessor. So, there is a boundary condition of the microprocessor.

Then the outside is insulated; that means, no heat is going out. So, this is stop there is no

heat flux, so that is 0. So, this is my so this is the domain that I have to discretize. So,

essentially  you  can  think  about  this  picture  actually  represent  your  computational

domain, ok. This will actually take care of my physical problem in hand. Because this

microprocessor will be the heat generated this guy will be the heat sink and then I have

insulated base. So, that actually takes care of my computational domain.

Now, the second part is the generation of the computational. So, these portion I have a

boundary condition at the heat source portion I have a boundary condition then there is a

boundary condition, then if I discretize them with a structure control volume, ok. So, this

looks computational mesh. So, this is structured mesh or quadrilateral  mesh, or other

option  this  could  be option  2.  So,  this  is  one option,  other  option  is  that  still  I  can

maintain this these are the 2 patches one is heat sink and one is the heat sink another is

the heat source, this is insulated base and I can generate unstructured grid. So, this is also

a one sort of computational mesh, but it is unstructured, ok.



So, in a domain decomposition step; that means, in step 2, you identify the computational

domain,  then  you generate  the  grid  either  structured  grid.  If  it  is  a  geometrically  it

simpler than you can generate structure grid, if it is geometrically not simpler than you

can use a unstructured grid to generate the domain.

(Refer Slide Time: 13:18)

Now, if you identify them with the all sort of points. Now if you consider that structured

grid,  if you consider that structured grid with the quadrilateral  elements,  ok. So, this

points all nodal points in this particular computational domain they actually represent the

mesh vertices, ok.

This is my one individual computational a control volume. So, this is one of my control

volume. And the control volume is connected with 4 vertices so these are called mesh

vertices. And when this control volume is connected like this that forms a essentially the

mesh,. Now second picture if you look at it, then each of these control volume, each of

these  control  volume are  having  4  different  faces.  For  example,  if  you look at  this

particular control volume. Now this gives you the idea about this faces. So, this are faces

of control volume, and what it helps? Individual control volume are connected with 4

faces.

And these faces are going to be very, very important as we see down the line of this

lecture, that we need to have the understanding of this particular faces, ok, and finally, if

you look at it or if you mark this whole thing 1, 2, 3, 4. These are all essentially control



volume or elements; where I am going to have the solution done. And this will be my

boundary condition for the sink, this would be the boundary condition for the source, this

is the insulated boundary, ok. So now, I can have the mesh details.

(Refer Slide Time: 15:32)

Now, mesh details one could be the important thing is the element connectivity, ok. So,

element connectivity if I look at this particular condition. So, this is my domain, and I

divide into 9 element. This is c, let us I this is there all, this is F 1, F 2, F 3, F 4, ok. So,

this is around c, if you look at the neighbors. So, neighbors are 10, 4, 8, 15 so, based on

the numbers ok. So, you can have faces, these are the faces, and these are the vertices.

Now, one could be the face connectivity.

So, when you talk about the element connectivity you need to keep track of the elements;

that  means,  one particular  element,  once you consider  you need to  see what  are  the

neighbors now face connectivity if I just look at this situation, ok. Here is a element this

is a element, these are the element. So, this is E 1 let say, this is E 2, then the neighbor of

E 1 is E 2, and the connectivity of this is the face. So, one and it can go this normal of

this face goes like this. So, E 1 and E 2, they are connected to each other their neighbor

and  the  F  is  the  corresponding  face.  And  another  way  you  can  have  the  vertex

connectivity, ok.



So, the vertex connectivity means, if I have let us say this 4 elements system, ok. And

these are there. Now vertex connectivity would be if I connect this with these points. So,

this is called the vertex connectivity of the system.

(Refer Slide Time: 18:16)

And once you take them into the complete domain so, this is my if you look at this

particular some example of 1, 2, 3, 4, 5, now I am interested in the element 3. Now

element 3 the equation if I discretize. So, do not worry about this discretization or the

discretize equation. We will see how we get back this equation. If you look at element 3

what are the neighbors? So, neighbors are 2, 5, 1.

Because why we are calling into the neighbors 2 5 1, not the 4; because the element 3

and 2 they are having a common face of F this is the common face. Element 3 and one

there is a common face, element 5 and 6 there is a common face, but if I look at element

3  and 4,  they  are  connected  with  one  common vertex.  But  they  are  connected  with

common faces. So, neighboring elements these are neighboring elements not neighboring

vertex. So, you can say this is F 1, if I go by that this is F 2, this F 3; that means these are

the faces. And I can write down my equation for that, ok. And if you look at in the

complete system, this probably show the equation is talking about 1, 2, 3, 4, 5. So, all the

elements  the  equations  are  written,  and  any  somewhere  between  that  one  line  will

represent for the element 3.



So, that means, when you actually discretize the system like this. And you get back to the

complete when you actually put them together, you get a system overall linear system

like this. And all this in this particular system every individual element they are taken

into consideration.

(Refer Slide Time: 20:19)

Now, if you go to the equation discretization. So, what is the equation? Basically I need

to solve A X equals to b. And here x is nothing but my T. So, I can say A T equals to b.

That is what I am trying to solve, ok. And where I am trying to solve? I am trying to

solve over this particular computational domain, and these are all my individual element.

This patch 2 is the T sink, this is t source and this is q (Refer Time: 20:53) is 0.

Now, here if you look at all these interiors points are 1, 2, 3, 2, 25 these are marked,

patch one having some points, patch 2 having certain points patch 3. So, I have to make a

demarcation of these faces, because these faces I have boundary condition.



(Refer Slide Time: 21:20)

So, once you make a demarcation of these faces, you actually now look at the stencil. So,

what equation you are going to solve here for all this is points is the delta dot k delta T

dV equals to q dot dV. So, this is my equation, and this equation is valid is inside the

domain as well as at these faces, but these faces there will be boundary condition for T.

So, I have to apply my boundary condition to have this.

Now, when you look at the discretization stencil; so this is how you number the element.

So, basically this could be one, this could be 2, that is how you sequential number the

elements. And once you take an individual element, around that you mark the faces. Not

only the faces what you have to mark is that the corresponding neighboring element.

These  elements  are  very  important  to  keep  track  of  it,  because  these  neighboring

elements are going to. So now, if I write down the equation, let us say I will write down

the equation for c. There is a element this particular element, if I am I concentrate on that

particular element. So, my equation would be minus k surface delta T dot ds equals to q

dot V c, ok.
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So, if I do that summation so around that c this is k delta T dot s f equals to q dot c V c,

ok. And this f goes over that surface; that means, 1, 2, 3, 4 these are the surface. So, the

summation would be over those surfaces. So, if I write that k delta T of surface 1 dot s f

1 minus k delta T f 2 dot S f 2 minus k delta T f 3 dot S f 3 minus k delta T f 4 dot S F 4

equals  to  q dot c  V c.  So,  this  is  my now you see my steady state  heat  conduction

equation boils down to this mathematical expression.

Now, what is my S f 1 S F 1 would be delta y f 1 i, ok.
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So, if you look at it the particular element c, now I am dividing this in the x direction this

is small x the uniform width and this is delta y, then my S f 1 would be delta y f 1 i my

delta x f 1 would be x f 1 my minus x c. So, this is the distance between this f 1 is the

neighboring cell on the upstream site, and delta T f 1 is nothing but del T by del x f 1 i

plus del T by del y f 1 j.

Now what is x c? X c is the co-ordinate of element c except is the x co ordinate of f 1

element then you have delta y f 1 delta y F 1 is the area of face F 1. And S f 1 is the

surface vector of f 1. And then delta T f 1 is the gradient of T 1. So, this is how it

transform to the system.

Now we will stop here today. And then take it up in the following lecture from here, how

we proceed to get that final linear system.


