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So, welcome to this particular lecture on we will continue our discussion what we have

been doing so far.
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So, what are the information that one has to have? That information that one has to have

is  that  eigenvalues  of  A Hermitian  A;  so,  this  is  a  product  of  the  matrices.  So,  the

eigenvalues of A Hermitian A are real; that means, they are all greater than 0. So, that is

an important condition that you have. So, that their square roots are singular values of A.

Secondly the A 2 or the magnitude A 2 is equivalent to the largest singular values of A

and A F is the l 2 norm of the vector of all singular values of A. So, this is a very very

important  information  that  is  applicable  while  getting  these  different  norms  for  the

matrix. Now, one can compute these things and show that the spectral radius is there.
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Now, the important question which brings to that is a spectral radius a norm that is an

question. Now, this is possibly true for some particular cases, like spectral radius of A

would be l 2 norm when A is in Hermitian matrix. So, that is a very very special case, if a

is not an Hermitian matrix, this is not valid. So, this is a special case this validity can be

obtained. Now, in general this is not true as I said if you have a matrix like that the

spectral radius is 0 though a not equals to 0 and the triangular inequality not satisfied. So,

this is also there rho A plus B equals to 1 while rho A rho B equals to 0. So, that is why

for a special Hermitian matrix or the special case of Hermitian matrix this is possible,

this will become a norm otherwise in general they are not.
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Now, we have looked at some matrix property, then norms including the vectors norm.

Now it brings that once you know this properties how do you get the error calculations

and where do you get all this error? The error actually arises during the floating point

arithmetic  calculations.  So,  what  we  will  do?  We will  look  at  some  floating  point

arithmetic and what is the model for that and then we can look at some sort of a notation

and forward and backward errors which are associated with this floating point arithmetic.
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So, again coming back to the story of the same thing, the when you are dealing with any

numerical system or numerical methods or approximations one of the crucial component

is roundoff error that happens because how the post decimal digits are rounding off to the

nearest possible digit and the error can be accumulated for certain problems. And that

can lead to a huge error in your final calculation or there are some errors which are

associated during floating point calculations.

So, what is the basic problem? The set of A of all possible representable numbers on a

given machine is finite, this is a very very important and I would say loaded statement

here. Set of A of all possible representable numbers on a given machine is finite, but

what we would like to use the set of the set to perform certain operations like addition,

subtraction,  multiplication,  division on an infinite  set.  So,  what brings that  the usual

algebra rules are no longer satisfied since results of operations are rounded. So, this is

where the problem comes.

And  while  talking  about  different  kind  of  errors  under  the  discussion  of  numerical

schemes we have also discussed this roundoff error and that time we said the roundoff

error appears because of these rounding of the numbers after the decimal points. So, as

you rounding off and you go along with your calculation then these are problems because

one point of time this can be I mean we concern compounding error and the error in your

final solution could be very large. So, it has to do with your, the backbone of that is that

the set of arithmetic operation that we are carrying out and this is not an usual algebra

rules which are followed that is why the rounding off happens.

So, that tells that basic algebra breaks down in floating point arithmetic. So, that is what

the problem is. So, the floating point arithmetic for example, what happens if you have a

number a and you do b plus c and then a plus b plus c. So, this is where the problem

starts  appearing and all  your numerical  system you are doing some sort  of addition,

division,  gradient  calculations  and  all  different  calculations  which  are  involved

calculations associated with this system. And Matlab one can do some experiment these

are some numbers for 1000 random numbers find number instance when the above is

true. So, one can find or carry out this exercise by himself and try to check this particular

problem.
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Now, once you say that that rounding error that is appearing due to the calculations of the

after decibel points or then that has to do with the machine precision. So, now, you see

why we are talking about all this important property, because it is not only that you have

an governing equations or the partial differential equation. And you use your numerics,

discretize them get a linear system and you can straight away use some linear solver and

get the solution; that is not as straight forward as it sounds. So, all these when you use

your numerics you need to take care of all sort of uncertainties, all possible cases, all sort

of  exceptional  cases,  treatment  of  proper  boundary  conditions  and  finally,  getting  a

proper discretize equations.

Now, when move down to the linear algebra or solution of the linear algebra these are the

issues associated with that. How to get an efficient linear solver which would be cost

effective which can give you accurate solution, but at the same time fast enough stable.

So, it just like you have everything at the same time in your basket and you need to some

sort of a maintain and balance to get an optimum solution for your system. And that is

where it is always challenging for the CFD code how good your linear solver is how

what is your order of accuracy of the numerics; that means, the discretize system is. And

they are  connected  with  some sort  of  an  calculations  which  is  associated  with  your

hardware machine precision means these are hardware.



So, you may have a high end CFD code or the numerical method which is higher order

accurate  everything  is  taken  care  of  very  nicely,  but  then  you  do  not  have  proper

hardware or the proper machine precision then again you are going to get lot of errors.

So, it is it has to have some sort of a handshaking between both the hardware and your

set of mathematical instruction that you provide to the hardware through your coding and

that is where the precision of the machine becomes very important.

Now, when a number x is very small; so, there is a point when 1 plus x equal to a in a

machine sense. So, this I mean to say in machine sense it is not that. So, the computer no

longer makes a difference between 1 and 1 plus x that is where the machine precision has

been taken care of and there is no error associated with this precision. So, in a nutshell if

I  put them in a mathematical  expression the machine epsilon is  the smallest  number

epsilon such that floating of 1 plus epsilon not equals to 1. So, this number is denoted by

u over sometime epsilon ok.

So,  many  discussions  are  going  on  and  rules  and  all  these  things  for  this  kind  of

calculations how to get a precised machine in error.
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So, once you talk about the errors which are associated with the machine precision you

have certain rules to follow and rules number 1, which says f l x equals to x into 1 plus

epsilon where epsilon is going to be very small,  here u sometimes epsilon this is the

number  ok.  So,  the  epsilon  satisfy  this;  rule  number  2  for  all  operation,  like  any



arithmetic operation addition, subtraction, multiplication, division f l x dot y must be x

dot y one plus epsilon dot where epsilon dot is again less than equals to u. So, this is

again an important rule which takes care the basic arithmetic operation. So, that takes

care of that thing.

Rule number 3; which is very very specific to addition and multiplication operation. So,

the floating point a dot b equals to floating point b dot a. So, this is only true for this dot

belong the set  of  plus  and multiplication  only. So,  these  are  3 rules  which  are very

important for handling the precision of the machine.
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Now, one can take an example and quickly glance through the things you can consider

the sum of 3 numbers which are very simple, I mean these are some sort of an school kid

they do y equals to a plus b plus c you given a 3 numbers you just get the addition ok.

So, what you do done as floating point of floating point a plus b plus c. So, your eta

equals  to  floating  point  a  plus  b  which  is  this  component,  this  is  my  eta  which  is

equivalents to a plus b 1 plus epsilon; now y 1 is floating point eta plus c. So, that is the

total component this is your y 1. So, it is eta plus c 1 plus epsilon 2, now what is eta? Eta

is a plus b 1 plus epsilon. So, I am putting back the values of eta here. So, eta is a plus b

1 plus epsilon plus c into multiplied with 1 plus epsilon 2.



So, if you just rearrange this stuff I mean essentially some sort of an algebra it turns out a

plus b plus c plus a plus b into epsilon with the whole thing the bracket gets multiplied

with 1 plus epsilon. And if you take out that a plus b plus c out 1 plus a plus b divided by

a plus b plus c epsilon 1 1 plus epsilon 2 and epsilon 2. So, they are terms which are

associated with epsilon 1 epsilon 2. And then if you disregard those higher order term;

that means, the product of epsilon 1 and epsilon 2, if epsilon happens to be small. So, this

would not contribute too much, then the whole calculation of that which is essentially

your y 1 is a plus b plus c 1 plus some epsilon 3.

So, epsilon 3 is nothing, but a plus b by these epsilon and epsilon 2 and we have actually

discarded  the  values  for  higher  order  terms  epsilon  1.  So,  these  send you  back  the

property of this. So, that is what it satisfies.

(Refer Slide Time: 16:51)

So now, if you redo the calculation or the computation as y 2 equals to floating point of a

plus floating point b plus c. So, you need to do that algebra here.

So, if you need to do the algebra, then what you get the floating point a plus floating

point b it would be a plus b plus c into epsilon 4. So, this also satisfied. So, the first error

is amplified by the factor a plus b by y in the first case and b plus c by y in the second

case. And in order of to sum n numbers more accurately it is better to start with the small

numbers first ok, but one has to be careful if the numbers have mixed sign. So, that is

also an important condition to be noticed.



But while we say that it you start with the smaller number first then the sorting also takes

some sort of an computing cost. So, everything comes with some sort of an computing

overhead and all  these computing overhead is  associated  with your final  output.  So,

given a option you need to have a very good code or numerical methods which should be

efficient and should be fast enough.
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Now, moving ahead with this discussion of norms and others; now you can find out the

absolute value notation. How one would define? You have certain given vectors x and

mod x x and mod x is the vector with components x i. So, you have two different things

that is x is the component wise absolute value of x. So, if you look at the similarity

property of the matrices. So, mod of A equivalent to a i j mod of that. So, these are the

two things one is applicable for vector other is for matrix and most of the time these

properties are using the properties of vector. So, the obvious inequality that turns out to

be floating point of a i j minus a i must be less than of u bar alpha i j which translate into

floating point of A plus E with mod e is this.

So, the arithmetic operations the errors which are associated with the vector that we have

seen can be extended now for matrix. And there could be also similar sort of errors and

which means a less than equals to b means a i j less than equals to b i j for all i and j ok.
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So, again one would like to look at the error for the inner product. So, we have defined

the  inner  product  earlier.  Now,  one  would  like  to  see  the  error  product  which  is

associated with these inner products.

So, inner products are in the innermost parts of many calculations, because if you are

dealing with vector or if you are dealing with rather matrix comprises with some row and

column vectors essentially or whether directly or indirectly you deal with lot of vectors

calculations. So, that is where the inner product becomes an important key component,

what is the lemma associated with that if delta i mod of delta i less than that small value

u bar n into u bar less than 1. Then product of 1 plus delta i equals to 1 plus theta n where

theta n must be less than equals to n multiplied with this u bar divided by 1 minus n u

subscript.

This is the small number associated with machine precision. So, the common notation is

that you can define gamma n which is essentially this particular term can be equivalent to

gamma n. So, the result of this inner product is that floating point x transpose y minus x

transpose y the magnitude of that satisfies less than equals to gamma n x transpose mod

y. So, this is an very very important theory that is required for this computing of this

matrix system.
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Now, one can look at this using some sort of an numbers. Let us say when your gamma n

less than equals to 1.01 n u then floating point x transpose y minus x transpose y would

be less than that. So, whatever we got here, it just uses that value and gamma n less than

equals to 1 point means 1 by 1 minus n u less than equals to 1.01 or 1. So, every term

which are associated with all these calculations gamma n and all these they have certain

significance or physical significance.

Now, for the smallest number being 2 into 10 to the power minus 16 the assumption

gamma n less than equals to 1.01 holds for n less than equals to 4.46. So, one can always

do some sort  of an back calculation  of all  this.  So,  what  is  the consequence  of  this

particular lemma is that A star B A multiplied with B minus floating point of A multiplied

with B which must be less than equals to gamma n mod A multiplied with mod B. So,

that is what the so, one can write in a other way (Refer Time: 24:37) floating point x

transpose  y  minus  x  transpose  y  the  magnitude  of  that  less  than  equals  to  n  the  u

subscript x transpose y bar which is order of small u square. So, u subscript square so

that is the order. So, one can obtain the value separately.
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So, this is some.
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Now, once you move so, you got to know by this time how to calculate the error. So,

now, one can say how we define forward error, how we can define backward errors. So,

the definition is like these assume the approximation y hat to y, where y is a function and

it can be computed with some arithmetic precision epsilon. So, the upper bound for the

forward error would be delta y equals to y minus y hat or the magnitude of that.



So, that is the upper bound of for the forward error. So, this is not always easy. So, one

has to note that. So, the alternatively one can find some equivalent perturbation on the

original data or the initial data which produces the result y hat. So, in other words if I

have to write I can write f x plus delta x which will lead to my upper hat ok. So, these

this is the problem statement the approximation of y hat to y. So, the what we are doing

that approximation to y. So, the initial data if it is perturbed it will lead to that. So, the

value of delta x is called the backward error and you can do certain analysis and find that

bound of the backward error.

So, when you talk about the forward error; that means, I am going from these to this. So,

I am straight away finding what is my final these things and the difference of that is

going to get me the forward error and when you are trying to do the backward error

initial data is perturbed such that you get to the y hat with less error.
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So, take an again an example which will allow you to understand that thing in a much

clear way, let us consider the matrix a having 2 by 2 matrix; obviously, you have a b 0 c

B another matrix which is also 2 by 2 you got d e 0 f. So, the similar elements like

second row first element are having 0 values. So, you consider the product of the floating

point product of a dot b.

So, how what do you get first term you get a d 1 plus epsilon 1 second term you get a e 1

plus epsilon 2 b f 1 plus epsilon 3 and the whole thing multiplied with 1 plus epsilon 4.



This  exactly  follows the multiplication  rule  that  we have discussed earlier, this  term

would be 0 because they are both having 0 and this term the last term would be c f and

this would be also a 2 by 2 system c f 1 plus epsilon 5.

So, all this epsilons 1, 2, 3, 4, 5 they are basically some small numbers. So, this results

one can write you use some property of the matrices and write that A in the first matrix

which you divide by 2 by 2 and the second one 2 by 2 you write a b into 1 plus epsilon 3

1 plus epsilon 4 0 c into 1 plus epsilon 5 d into 1 plus epsilon one e into epsilon 2 epsilon

4 0 f. So, what you get floating point A dot B is A plus E A B plus E B. So, the backward

errors E A satisfy the criteria less than second orders and this is also less than B. So, this

is what you get when you find out the forward and backward error. So, we will stop here

and take it up in the next lecture. 


