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So welcome to this lecture of this Finite Volume Method and what we are discussing or

rather we have discussed so far right now in to the business of doing the calculation for

the gradient. And gradient calculation as we have seen in our previous lectures, we have

two approaches; one is the using compact stencil another one is the extended stencil. And

in the last lecture we have discussed the calculation procedure using the compact stencil.
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So, now you will move to that today on using the; so essentially what we are doing the

gradient which is for a particular cell is represented as summation over all the phases and

so this is what we are in to the business. So, essentially that is the gradient calculation

that we are trying to do so, that is our objective. Now once you are trying to do this

gradient calculation there are ways how we can do that. And specially when you move to

the  non  orthogonal  system  you  come  across  the  cross  diffusion  term.  So,  gradient

calculation becomes very important becomes very important in the sense that in the cross

diffusion term cannot be evaluated using the nodal values.



Now how do you define your discretized stencil that leads to 2 approaches; one is the

using some sort of a compact stencil and where what you do that you have a correction

term for your flux or the surface flux which is like g c phi C minus 1 by g c phi F, where

C is the particular element that 1 is concerned of calculating the. So, essentially if you

quickly have a diagram like a particular cell this is C what we are interested and this is F

and this is the connecting line between C and F so and this is the phase F.

So, calculation of the phase values which are interpolated using this formula and g c

actually is nothing, but your geometric weighting factor. So, this and how to calculate the

surflex flux phi F or the corrected flux and the g c for that there are different options. So,

we have discussed three options option 1, option 2, and option 3. 

So that is what we have essentially done till the last class. Now what we want to see

using is the compact stencil we have looked at it. So, now, we want to look at is the

extended stencil so; that means, which clearly give us an idea the cell which would be

calculated it is not going to be connected with an immediate cell like this rather it would

be connected with some other surroundings element.
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So, to do that let us look at these particular stencil so look at this 2D stencils. Now why

we call it extended because there are F 1, F 2, F 3, F 4 this all are connected; so you can

see the cells contributing to a particular node which is node for the weighted average. So,

being said that you can see the node n 1 which is getting contribution since that node is



common to 3 different elements like F 1, F 2, F 3. So, that gets the contribution from all

3 elements. Similarly if you look at the node n 2 the n 2 is getting contribution from all 3

elements like F 2, F 3, F 4 and connections between F is the phase between n 1 and n 2

or the connecting node between n 1 and n 2.

Now the what do I need to calculate is the value of phi F. So, what we are interested

finding these value; finding the value of phi at the phase F which can be computed as the

mean of the values and the vertices in n 1 and n 2. So, this essentially necessitate the

estimation of the properties at the vertices. So, far we have been dealing with the system

where we all concerned about the values which are available at the cell center. 

Now  here  while  you  are  trying  to  calculate  this  surface  flux  you  need  to  get  an

information at the nodal point. So, the properties at a vertex node are calculated using

this weighted average. So, this is some sort of a weighted average which is used, now

how  we  take  the  weighted  average  because  we  take  some  sort  of  inverse  distance

function to calculate this kind of weighted average.

So, in that case when you calculate the phi n which can be expressed as the summation

over k equals to 1 to NB n phi Fk divided by r n minus r F k. And denominator this is K

equals to 1 to NB n 1 divided by r n minus r F k. So, here n stands for the vertex node, F

k  neighboring  cell  node  cell  node,  NB n  stands  for  the  total  number  of  cell  nodes

surrounding the vertex node so surrounding the vertex node. So essentially you get all

this information and vertex node n and then we have a distance function r n minus r F k.

So, that stands for the distance from the vertex node to the centroid;  centroid of the

neighboring cells. So, that is what it gets you back. So, you have all the informations;

you have the vertex node, you have the total number of nodes, you have the neighboring

cell node then you have the distance from the vertex node to the center and then you can

get some sort of a distance average distance calculation. 
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Once the phi and e at the vertices are found then at the phase you can find out the phi f as

phi n 1 plus phi n 2 divided by 2. So using this sort of a inverse distance calculation at n

1 and n 2. We can find out and once you find out n 1 and n 2 the surface flux or the

variable  could  be  obtained  using  some sort  of  a  arithmetic  mean.  And similarly  the

gradient could be calculated 1 by V c summation of F NB c phi f S f which is 1 by V c

summation of then we get phi n 1 plus phi n 2 divided by 2 at f S f. So, when you go to

3D system the calculations are little bit involved, but it goes in the similar fashion.

And there you can also go across all the nodes or the vertex node and found out now in

this particular approach the information from the wrong side of the cell also contributes

to the weighted average. So, if you look at this picture it may be possible that the cells

which are actually sitting on the wrong side they can also contribute to this weighted

average to the converged variables. So, these can be overcome by using some sort of an

up wind biased gradient and the higher order calculation based on the upwind biased

gradients have both the memory over it.

So, essentially there could be some you can note contribution to the weighted average

from wrong cells that is possible. If that happens it can be overcome by some upwind

biased  gradient  calculation  and  if  you  use  some  sort  of  an  higher  upwind  biased

calculation the may computing overhead also goes up. So, the computing overhead also

goes up. So, that is little bit involved and now if you move to 2D 3D that becomes bit



tricky  now. So,  that  is  how one can  use  the  compact  stencil,  and calculate  the  flux

variable at the phase.
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Now, we can move to another option is that least square gradient calculation so this is

another option.  And least  square method it to it offer actually more flexibility. So, it

offers more flexibility with the regard to the order of accuracy. So, order of accuracy is

also slightly better or so order of accuracy is also slightly better or higher compared to

other. 

And in  the  least  square  measure  what  happens  that  divergent  based gradient  can  be

recovered as a special case. So that is one of the advantage of this least square method

and the flexibility when we talk about the flexibility in brings some flexibility to a table

it actually comes at certain cost.

So, as proper weighting is needed for the stencil terms the computation of weights at to

some  sort  of  an  computational  cost.  So,  this  is  getting  hit  by  some  sort  of  an

computational  overhead.  So,  once  it  offers  you  better  flexibility  or  slightly  better

accuracy it also comes with some sort of an computational overhead. 

So, it is not that straight forward that you can get everything together in your plate and

get these things. So, let us look at these particular stencil and the change in the so, here

the cell which are concerned cell is C and these are the all neighboring cell and then we



can have an exchange between C and F. So, this could be F 1 F 2 like that and this we

need to get the information of phi C phi F and all these. So, to calculate the gradient and

So this width shows this schematic with the neighboring cells of this.

Now how do you obtain that phi F phi F it obtained at the using the value of phi C plus

delta phi C dot r F minus r C; which is essentially the r CF. Now the thing is that unless

the solution field is linear the cell gradient cannot be exert because C has more neighbors

than the gradient vector has components. So, every time you get these calculation of the

distance with the gradient vector now C has the new number of more neighbors. So, in

least square method at gradient essentially is going to be computed by an optimization

procedure.

So, you calculate this gradient by an optimization procedure. So, let us find the minimum

of the function is G c and G c can be defined as summation K equals to 1 2 NB c weight

factor w K phi F K minus phi C plus delta phi C dot r CF K so this is square. Now if I

expand this one slightly more so I will get k equals to this I have this w K then I can

write delta phi K minus delta x K del phi by del x at C so that is 1 component. 

Del y K del phi by del y C plus del z K del phi by del z C so that is the term. And then

you get the closer of this bracket which is going to be the square and closer of the other

one. Where your w K is some weighting factor so using that you get this term now the

other terms which are involved here.
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 Delta phi K is phi F K minus phi C delta X K is r CF K dot i delta y K equals to r CF K

dot j and delta z K is r CF K dot k so ijk. Now the minimization of this function can be

obtained  minimization  of  G  c  can  be  obtained  by  enforcing  some  condition.  The

condition is that del sel G c of del del phi by del x equals to del del G c of del of del phi

by del y equals to del del j G c of del of del phi by del z these are all 0.

So, once you get this minimization function or the mathematics which will actually get

you by some sort of an involved mathematical expression K 1 to NB c which will get

you 2 w K delta x K minus delta phi k plus delta x K del phi by del x C delta y K del phi

by del y C plus delta z K del phi by del z C which is 0 number one. So, that comes from

the first expression second expression gets you back the similar expression, but it is on y

K. So, it will be delta phi k plus delta x K del phi by del x C plus delta y K del phi by del

y C plus delta z K del phi by del z.

So, that gets you the second one and the third condition will get you another condition or

expression on delta z K. So, which is phi K del phi by del x C plus del phi by del y C. So,

one can take the derivative of the previous expression and can obtain all this condition.

So, you get from here you get all this three condition. So, each of them corresponding to

the first one actually corresponding to these derivative, the second one corresponding to

these  derivative,  third  one  corresponding  to  these  derivative.  So,  you  obtain  this

conditions which one can write in some sort of a matrix form.
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And if you write in some sort of a matrix form this will look like summation K equals to

1 to NB c w K delta x K delta x K that is first term, k equals to 1 to NB c w K delta y K x

K delta y K, third term K equals to 1 to NB c w K delta x K delta y K. So, that is what

and the second term will contribute to w K delta y K x K. And similarly you get wk delta

y K delta y K and the third one is K equals to 1 to NB c wk delta y K delta z K.

This is K equals to w K delta z K delta x K w K z K y K 1 2. And you get on the factor

which is getting multiplied is that del phi by del C at C del phi by del y at C del phi by

del z at C. Which is equal to my another vector which is K equal to 1 to NB c wk delta x

K delta phi K. Similarly K equals to 1 to w K delta y K delta phi K K equals to 1 to NB c

w K z K phi k so you got an essentially the matrix form. So, this is the matrix form of the

previous equation.

 Now how do you find out the solution to this particular equation so basically solution;

obviously, the solution exists if the matrix is not if this matrix is not singular. So that

means, this has a nice condition or it has to have a nonsingular system so that it can have.

Then also the choice of w K so, that is another factor. So, choice of w K is also very

important because that will essentially to some extend or rather partially contribute the

convergence  of  this  system.  So,  for  example,  if  w  K is  chosen  to  be  1  for  all  the

neighbors of C; then all neighboring points will have the same weight in computational

of the gradient, irrespective of whether they are near or far from point c so that is one

problem.

Actually points that are further from C will have a more important influences at the error

function  which will  be more effective  by their  error. So,  this  is  a  very important  or

crucial element in this particular matrix because that has lot of impact. So, if you go back

to this cell now since it is taking a neighboring cells information if for certain values of

wk,  it  may  have  possibly  have  the  farthest  cell  had  has  lot  of  influence  on  this

approximation and that can lead to some sort of an error, or alternatively one can have

some alternative choice for w K.
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So, that one which some something which has been used and can be obtained is that w K

could be some sort of a inverse distance function are F K minus r C which is going to be

del x F K square del y F K square del z F K square. So, that way 1 can actually estimate

the w K ok. So, other option is that 1 can also use w K as an inverse distance of power n

where n could be 1 2 3 and so on so.

So, it is also possible not taking the direct inverse you can take an power of that inverse

or with some kind of things.  Now as mentioned the divergence based gradients  is  a

special case of the least square formulation. So, one can show that so, what we have said

that  divergence  based  gradient  is  essentially  a  special  case  of  the  least  square

formulation. So, the formulation that we have for the least square approximation one can

also obtain that divergence based gradient and we can see that. So,

Thank you; we will discuss our other things in the next lecture.


