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So, welcome to this  particular  lecture.  And what we are discussing right now on the

diffusion equation or rather the discretized equation for the diffusion term. So, we what

we have done so, far just to give you an brief idea before we begin with the exact lecture

for today is that, we have taken the diffusion equation for Cartesian orthogonal grid, then

we have done the non orthogonal system and right now we are dealing with the non

orthogonal unstructured system.
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So, if you look at what we have obtained in the last class is, this is what we obtained and

stopped for the unstructured grid system or the non orthogonal grid system. So, this is the

final discretized equation that we obtained. And if you look at this particular equation,

this  particular  equation  it  looks  exactly  similar  to  your  orthogonal  system  or  non

orthogonal  non  Cartesian  orthogonal  system.  So,  the  equation  system actually  looks

similar.



So, that is for one of the advantage for this finite volume formulation, that you can have

a similar kind of discretized equation.  So, only one discretized equation like the one

which is shown here, so that would work for.
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So, essentially whatever system you have you end up getting a c phi c plus F goes over

all the elements neighboring element equals to b c. So, that is one equation that works for

everybody.  It  works  for  my  Cartesian  orthogonal  system,  non  Cartesian  orthogonal

system,  non-orthogonal  unstructured  system.  So,  for  each  of  this  system  the  end

discretized  equation  exactly  similar;  where it  differs? It  differs  in  calculation  of  this

coefficients of this a c aF here F goes for neighbor elements.

So, essentially the elements which are surrounded of that particular elements c, where the

discretization has been taken place or the discretization is being carried out. And the

contribution from all these neighboring elements are going to come in the discretized

system. This is the algebraic system which will finally, lead to A x equals to b. And while

you  compare  all  these  different-  different  kind  of  systems  you  only  get  different

coefficients. But, once you come down to non orthogonal system there will be one more

extra term, which is very important term is called the cross diffusion term.

So, this contribution from this particular term goes in the source term. So, this is an

added contribution which comes due to non orthogonality and that bone has to take here

while doing the non orthogonal grid system or the unstructured system. And we have



already  seen  that  the  surface  vector  which  is  the  surface  normal  vector  having  two

different component E f plus T f; that means, one component provides you or gets you

back the orthogonal contribution other compute to the non orthogonality.

So, this is where all these system will differ from each other and the contribution would

show up in the calculation of the coefficient. So, this is where we stopped. And now what

is  important  is that  when we dealing with the Cartesian system or the non-Cartesian

orthogonal system, we have seen how to implement the boundary condition. Similarly

non orthogonal unstructured system also will work out how to implement the boundary

condition. And once you have worked out the boundary condition because as I keep on

reiterating the fact these particular equation is valid for any interior element or cell this is

not valid anything which actually exit at the boundary or anything which is associated

with the boundary phase.

So, for the boundary phase or the boundary element, some special treatment is required

all though the governing equation is going to be the same or the rather the discretized

equation is going to be the same, only contribution due to boundary treatment they will

turn up.
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So, will set that will now look at this non orthogonal systems. Non orthogonal grid we

will look at the first type of boundary condition is the prescribed boundary condition or

Dirichlet boundary condition ok. So, this is where you have given the phi.



So, if you consider a surface like that this is a surface like that or element like that, where

it is center is c it goes to this boundary which is b and this vector is e then you have a

normal vector in this direction which is the direction of the surface vector and this is the

connecting  distance and this  distance should be dc small  b and that  is  the boundary

phase. So, this is the element which we are interested in and that is the centroid c and this

is the connecting line between the point b, and there is a surface vector which is acting

here along this direction n.

So, now we implement, but one thing one has to note here even while you implement the

Dirichlet boundary condition or Neumann condition, you need to account for the cross

different diffusion term. So, essentially important point is that need to account for cross

diffusion term which is also arises at the boundary phases. Now this happens whenever

the  surface  vector  which  we  are  looking  at  here  they  are  not  collinear  along  the

connecting lines. So, cross diffusion term will appear.

So, now the term the system which we are dealing with at the boundary is J b dot S b

which is gamma b del phi by v dot S b which one can write minus gamma b del phi b dot

E b plus T b; that means, my surface vector at the boundary having two component E b

plus T b and if one has to look at it this should be the direction of E b and this is how it is

going to be T b. So, that is the decomposed or the components of that.

Now, if i write that it is gamma b phi b minus phi c by dc b E b minus gamma b del phi b

dot T b. So, which in terms of coefficients it is flux C b phi c plus flux b. Now flux C b

where is equal to gamma b D b. D b is as you have defined so, far D b is the geometric

diffusion coefficient and this would be gamma b, D b phi b minus gamma b del phi b dot

T b and our D b is nothing, but E b divided by dcb.

So, once you put this things back and the system, you get your if you put these things

back in this particular equation you get back a F equals to flux F a a c equals to small

mbc flux f flux C b and b c equals to Q c V c minus flux b b minus nbc flux V f. So,

given a specified boundary value one can get all this final coefficients.

Now, once you get that the second kind of boundary condition would be Neumann type

of boundary condition.
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So, Neumann boundary condition it is thing is that in this particular case this follows

exactly like orthogonal grids. So, the Neumann case one can follow the procedure in this

case. So, flux is user specified. So, one can follow the procedure exactly that we have

derived for orthogonal system.

So, if you do that just the extra term which is going to be added at the source term. Now

the third kind is the mixed boundary condition. Now for mixed boundary condition you

have both specified value phi specified and flux E q is also specified. So, both of them

are specified. So, in this case also one can derive that boundary condition.

So, once should do that we use the similar kind of example like what we have drawn

right now that the element is there, and you have that boundary phase where you get the

this is e b this is where the sf and n. And here at this phase this is the boundary phase you

have both phi specified and you have both flux specified. So, you can derive the system

like J b dot S b, which is going to be now gamma b phi b minus phi c d C b E b minus

gamma b del phi b dot T b.

So, again your surface vector is having two component one is E b another is T b. So, this

is essentially E b plus T b. So, that is what it shows up here which is H infinity phi

infinity minus phi b S b. Now from here you get phi b which is h infinity S b phi infinity

plus gamma b E b divided by dcb phi c minus gamma b dot T b and denominator you get

h infinity S b plus gamma b divided by.



So, that is what you get for phi b at the boundary. So, once you get that you use this in

this particular equation. So, now, you put in back in that particular equation and you get

now your Jb dot S b is.
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So, it will get slightly involved now, because you will have some cross diffusion term

associated with this calculation which was not present in the case of orthogonal systems.

But again the non orthogonal system is more generic in the sense the special case of this

is the orthogonal system. Now you get h infinity S b gamma b del phi b dot T b divided

by h plus gamma b E b divided by dcb.

So, one can think about this is my coefficient of a b, and this one can write S b comma

due to cross diffusion CD here essentially represents cross diffusion. So, I will represent

this one is in more compact form by flux C b phi c flux flux b V b. And if you equate the

coefficients you will get by equating the coefficients between these two you get flux C b

equals to h infinity S b gamma b E b divided by dcb h infinity S b gamma b E b and what

you get for flux V b V b is minus flux C b phi infinity minus h infinity S b gamma b del

phi b dot T b divided by.

So, this is what you get for these coefficients. Now the thing is that since this is for the

non orthogonal system if the cross diffusion coefficient is zero. That means, from here

you can always get back the similar thing for orthogonal system and that is a special case



of non orthogonal system where this particular term actually goes to 0, then everything

else look exactly similar for orthogonal system now.
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So, the modified coefficients in that system of the discretized equation: so the modified

coefficient in discretized equation look like a F would be flux F f minus gamma f E f by

dcf and a c equals to flux C b plus f goes from all the phases flux C f and b c which is the

source term it will be Qc V c minus flux V b minus c flux V f. So, that is what you get

when you apply all the boundary condition. So, essentially what you get when you deal

with all  this  orthogonal  or non orthogonal  system your equation discretized  equation

looks same then when you come down to the boundary element as per your boundary

condition.

So, you use that boundary condition and get this modified coefficient as we have derived

for all these cases individually whenever you have a specified feed value at the boundary

phase. That means, the Dirichlet boundary condition, you obtain the different coefficients

when you have the Neumann condition that time the flux is specified. So, you obtain the

flux condition then when you have a mixed condition you get the coefficients modified

accordingly.

And non-orthogonal system is more generic in the sense because if you get these term of

the cross diffusion term which are the contribution due to T b if a are 0 it essentially

becomes orthogonal system. Now there would be one important thing to discuss is that



skewness. So, that is something which will be very important to discuss because your

discretized equation you need to have or it is very much necessary to estimate the value

at the phases.

Now, when you estimate the value at the phases: so essentially you estimate the value at

phase. Now that could be of average value or it could be in a different value. At different

steps  of  the  discretization  process  linear  variation  of  the  variables  are  essentially

assumed. So, that is the most common that which we have discussed linear variation at

the variable which are essentially assumed. Now if this linear variation is extended for

the other cases then there are certain issues for specific cases.

So, that time we can avoid this linear variation and come up with something else. So, the

common practice is essentially is that you do a linear interpolation profile to estimate the

phase value. So, that is the common practice. Now when the grid is essentially as long as

you have no problem with the grid there is no issues with this linear interpolation and

you can get an very good estimate, but if there is a small skewness for example, let us

say you have an element like this and that is your connecting element. So, you have c

here you have f here.

So,  they would be connected  with this  line.  So,  this  is  F prime and there would be

another point which is essentially going from there which is f and this is also connected

and the surface vector will act as S f. So, if you look at this particular element or the

example which we have drawn right now, where the intersection point of segment of C

and F that intersection point is F prime which does not coincide with the phase centroid

of that f.

So, essentially this is my phase and the phase center actually lies at this point f and the

connecting line between the centroid of C and the neighboring element F they lie at f

prime. So, they do not lie at the same location. So, there is a offset or essentially this is

the skewness. Now, in order to keep the accuracy or in order to maintain the accuracy of

the  discretization  method:  so  in  order  to  do  that  maintain  that  accuracy  of  the

discretization  methods.  So,  all  phase  integration  need  to  take  place  at  point  f.  So,

essentially the integration needs to be taken place at point f ok.

So, what happens a correction for the interpolated value at f prime is needed in order to

get  the  value  at  f  why? Because  the  connecting  line  between  c  and  f  there  are  not



collinear or they do not lie on the same point f and f prime are essentially different point.

So, the skewness correction can be derived.
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So, this is the skewness and the skewness correction can be derived for phi f at point phi

is that phi f prime plus delta phi f prime dot d f prime f, so which essentially the distance

of these two between these two point f and f prime and considering the value at f prime.

So, this is a skewness correction and d f prime f is the vector from the intersection point f

prime to the phase center f. So, that is the correction that one has to do.

So, with that correction one can interpolate the value at this point. So, this is very natural

when you have some sort  of  a  skewness or  skewness  in the grid this  kind of small

skewness correction needs to be taken place so.

Thank you, we will discuss or other things in the next lecture.


