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So, welcome to this particular lecture on; we will continue our discussion what we have

being doing so for. Now that decomposition of S f so, there are different ways multiple

ways one can do that.
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So, let us start with let us have this cell connected which is let us look at this picture. So,

this is a approach called minimum correction approach. So, this is for the decomposition

of S f through minimum correction method or approach.

 So, you have these two points or the cell centre connected along the line D C f, this is

the e unit vector e along this surface point this is the direction of the surface vector then

we have got two component. Now in this case the idea is that the way it is done to keep

the non-orthogonal correction. So, the non-orthogonal corrections or the contribution for

the non-orthogonal distribution is as small as possible.

So, that is why we call it a minimum correction approach so; that means the contribution

due to. So, S f will have two component; one is E f one is T f this is like an orthogonal

contribution, this is our non-orthogonal contributions.

So, idea is that you sort of minimize T f contribution as much as possible ok. And, but

what  happens  if  non-orthogonalities  increases,  non-orthogonality,  increases  if  that

increases so, the contribution to the diffusion flux from phi F and phi C this contribution

will start decreasing ok. Now in this case it would be simple to compute the E f is e dot S

f e which is nothing, but S f cos theta e so, that is a simple way one can do that. Now,

this is approach one of the approach one can do that.
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Then one can do second way of doing that that is called orthogonal correction approach.

So, what you do here again you get this particular two elements, they are connected as

usual and the component of the surface vector one would be along this line, if this is

theta and the other one would be along this line the perpendicular one ok.

So, there also contribution comes from both phi F and phi C so, here what you do? You

define E f again S f e so, that is our orthogonal correction approach. Now, that is exactly

like what kind of I mean contribution that we take it essentially, keeps the contribution of

the term involving phi F and phi C same as orthogonal mesh, irrespective of the degree

of non-orthogonality.

So,  this  is  why  it  is  called  the  orthogonal  correction  approach,  you  just  take  a

contribution like that, where it will involve the information of these two cell centres as

we have done for the orthogonal mesh irrespective of the degree of non-orthogonality.

Once you do that this may not be an very acceptable approach because, if your theta

increases this can create trouble.
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Now, another option one can have the over relaxed approach ok. So, what you do here?

The vectors and everything look similar the corrections vectors and the components S f

will have as usual E f plus T f cell centres are connected along e through the surface. So,

here the terms which are very important here is phi F and phi C. Now how we do that or

mathematically one can achieve this calculation we can get E f equals to S f by cos theta

e which is S f square divided by S f cos theta e one can write S f dot S f divided by e dot

S f e.

So, to summarize what we are doing it here the diffusion flux at an element face of non-

orthogonal grid cannot be written surely in terms of the values which are connecting

through the cell centres or the nodes which are connecting through the cell centres. So,

what it require a term which will account for this non-orthogonality? So, you need a term

which will account for the non-orthogonality or this sort of angle theta.

So, that is the degree of I mean the degree of non-orthogonality. So, the term which

accounts for the non-orthogonality needs; to be added and which is called the so, called

cross diffusion term. So, that is very very important term for non orthogonal grid system.

So, if we put together everything what we have looked at it, then one can see that what

we are doing is at the gradient calculation at the faces. So, this was the component so,

this del f by f dot S f minus E f. So, we are trying to see the contribution from the cross



diffusion term, which was essentially one is that del f phi dot n minus cos theta e S f, this

was the case when you have minimum correction.

Then another option is that del phi f dot n minus e S f which is normal correction and the

last option that is that del phi f dot n minus 1 by cos theta e S f so, this is over relaxed.

So, theoretically what we are doing it we know the surface vector or the surface vector

will  have  two  component.  Now  the  component  which  is  going  along  the  line  that

connecting the cell centres that is along e or the normal that is easy to obtain.

And then, that involves the information of phi C and phi F and once you obtain that

information then you can actually using this information of the vector algebra we get the

contribution for the cross diffusion term. So, instead of going directly to calculate delta

dot so, if you go back and see there are two component for my flux discretization, one is

like our orthogonal contribution which can be directly computed using the information of

the connecting cells.  And the distance connecting between these two cell  centres and

then there is a contribution which comes from the cross diffusion term. 

Now this cross diffusion term instead of calculating directly what we do, we calculate the

corrections for E f and then using that E f we get back the other component. So, what

happens is that as we said the cross diffusion component, this component it is absolutely

0 for orthogonal system.

So, that actually brings back the non-orthogonal system to be a orthogonal system or the

behaviour of the non-orthogonal system; when you assign this cross diffusion term to be

0 that becomes an orthogonal system.
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Now the things come how do we treat this cross diffusion term that is an very important

issue because this cross diffusion term cannot be so, if you look at it the cross diffusion

term, they cannot be actually this cross diffusion term cannot be expressed using the

nodal values. 

So, the point here is that when you calculate this component along e or the sort of pseudo

orthogonal component, you can use the information of this two cell or the information of

this nodal values and can find out that E f. But or delta phi dot E f, but cross diffusion

term the problem arises this cannot be straight away expressed through the nodal values.

So, due to this, this some kind of corrections approach is required and some sort of an

calculation is required. One of this that how do you calculate the essentially we can look

at it the first the gradient computation. And then, we will see in a non- orthogonal

system how do we actually derive this cross diffusion term? 

So, gradient computation so, the point here is that in non-orthogonal domain as we have

already come across the non-orthogonal domain the computation of the diffusion flux

itself is complex. Because, it cannot be linearized and so, the diffusion flux cannot be

linearized  in  a  straight  cut  way or  straight  forward  way and also  cannot  be  written

directly with the function of nodal values.



So that means, the non orthogonal system gives rise to some sort of a challenge for the

engineers or the scientists to get this computation done in a perfect fashion. So, which on

the other way round it means the gradient calculation or the gradient has to be evaluated

in order to incorporate is non-orthogonal contribution in the discretization system.

So, essentially my discretized system must have the information of non-orthogonality so,

which gives rise to the cross diffusion term.  And the cross diffusion term cannot  be

calculated using nodal value so, that is where the problem lies. So, what we can use for

calculating the flux actually? We can use some gradient theorem, if we use the gradient

theorem what it gives you that which we have done del phi d v is the surface integral of

phi d s ok.

 And this is actually the ds is outward pointing interfacial vector, inter or you can say

outer pointing surface vector ok.

So,  what  one  can get  the average  gradient  how do we got  it  del  phi  v, the  average

gradient we got the del phi d v. Now once you combine this two what you get for a

system that del phi c average value is 1 by v c surface integral phi f S f ok. So, once you

integrate over the cell faces, this will lead to 1 by v c summation n b c phi f S f.
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 Now what one can do the gradient at the face can have two contribution; one at g c delta

phi c plus g F delta phi F where phi c phi, F are the nodal or cell centre values. So, you

use the information of the cell centre values to get this particular information.

Now, once we use this cell centre value and then we can sort of short of linearize the

system using the information of that. Now if you look at the whole summation term over

the cell so which is essentially J f for the diffusion term S f. Now this term is going over

all the face minus gamma del phi f dot E f plus T f.

So, this comes as we have seen this will be a two component one is E f one is T f and this

is giving rise to cross diffusion term or rather non-orthogonal correction term, this is my

sort  of  orthogonal  correction  term  ok.  Once  we  do  that  then  I  can  write  this  one

expanding and I will write this one as minus gamma del phi f dot E f plus summation

over all the faces minus gamma del phi f dot T f ok.

So, what it does this is a term, this term is I and this is the second term; term II term I is

the orthogonal linearized part or contribution or term II is due to non-orthogonal non-

orthogonal linearized part ok. So, we get two different contribution as expected. Now if

you expand it further so, this would be over f if I write down this would get me back that

minus gamma f E f phi F minus phi C by d c f plus summation over all the faces and we

get minus gamma del phi f dot T f.

So, we written the second term as it is for the time being. Then again we simplify the

first part and what we get is that gamma f D f phi C minus phi F plus over the all the

faces we written gamma del phi f dot T f. Here that D f is the again the similarly as we

have defined for the orthogonal system it is the geometric diffusion coefficient which

would be E f divided by d c F so, that is the definition of D f.



(Refer Slide Time: 22:07)

Now if you take it slightly more or expand it slightly more so, what we are having at the

left hand side is the flux going for all the faces and after decomposition or expanding we

get now summation over all the faces it is flux C f phi c plus summation over all the

faces flux F f phi f ok. And so, this you can put it in the bracket plus summation of f

going over c you have flux v f.

So,  all  these things  are  written  in  this  coefficient  format  what  we use  to  do for  the

orthogonal system. Here once you write down this if you expand these things, now if you

expand and these things, the final form of my discretized equation would be like phi c a c

plus summation F going over NB c a F phi F b c. Again here F stands for elements or

rather neighbouring elements so, where you get all this information.

 So,  if  you look the  discretized  system,  they  look exactly  similar  to  our  orthogonal

system. And again I am repeating or reiterating the fact this is one of the beauty of the

finite volume method, that what you get at the end the discretized equation or rather this

is my sort of discretized equation. 

So, whether it is a orthogonal system or non-orthogonal system the discretized equation

looks pretty similar. So, mathematically they looks similar only differences will come in

this coefficients. So, what that makes you to do or allow you to do that you can have a

discretization pattern or discretized equation which looks similar and can be applied to

all sort of system.



 Then it is much easier for computing purposes. Now before we talk about that in more

we just look at the coefficients here for this case which is going to be now flux F f which

is nothing, but gamma f D f and my b c is Q c V c minus summation of n b c flux v f

equals to Q c V c plus summation of f these things to gamma delta phi f dot T f 

So, this is the contribution which come as a source term in the non orthogonal this is

cross diffusion term. So, as I was mentioning the discretized equation looks exactly same

for your orthogonal non-orthogonal system. It start so, you can be on a one single frame

work and then, one can do the programming and that is the advantage of finite volume

method that it actually gets you back a same system of equations which can be applied to

both orthogonal and non-orthogonal system. 

Only thing is that what you need to take care of this coefficients? So this coefficients are

only going to change from one case to another case and for non-orthogonal system you

come across this cross diffusion term, which is a extra contribution come as a source

term.

If this term goes to 0 that will become the orthogonal system and the other things will

look  exactly  similar.  So,  that  is  where  the  advantage  lies  that  we can  have  a  same

discretized system for both orthogonal and non-orthogonal system and can be used with

different coefficients.

So thank you we will discuss all other things in the next lecture. 


