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So, welcome to the lecture of this Finite Volume Method. Now, we will look at the
boundary conditions. Now, when you look at the boundary conditions, again when you
talk about the fluid flow system; Fluid flow system essential you are solving, and a very
normal boundary conditions is one of the important boundary condition is the no slip
condition; that means, wall you have a no slip. So, this is the channel which we are
talking about I am solving the channel when the mass come in and mass goes out. Now,
if you want to solve this particular channel through the numerical methods, you need a
boundary condition. So, this will be the wall of the channel which will be no slip

boundary condition; that means, your flow components are 0.

Then if I solve the axisymmetric problem of the channel; that means, if I cut through the
half of the channel and put it here, then this particular boundary the axisymmetric
boundary condition would be imposed. So, this is the axisymmetric boundary conditions,
and at the outlet there will be outlet boundary conditions, it could be either gradient 0 or

some sort of a conductive boundary condition 0 if it is a unsteady problem. Now, when



you solve a flow around airfoil kind of structures along the span; you sort of periodic

boundary conditions. So, these are the sort of boundary conditions that you use.
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Solvers and Numerical Staff
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~ Solvers ;
v Direct: Cramer’s rule. Gauss elimination, LU decomposition =~ —* @
v Iterative: Jacobi method, Gauss-Seidel method, SOR method —> A

~ Numerical Parameters
v" Under relaxation factor, convergence limit, etc. ~
v Multigrid, Parallelization
v Monitor residuals (change of results between iterations) -~ /“
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Now, when you look at the numerical things, numerical things mean essentially my
PDEs has led to the linear solver of Ax equals to B. So, this is where I have to use
different linear solver to get the solution. So now, the solvers could be of the direct
solver; that means, I will get it directly A inverse which is always a tedious task, and not
a easy task, or it could be iterative solver. So, that means, I will get a solution of the A
through iterative process. And the parameter that actually controls the whole business is

under relaxation factor, convergence limit.

Then, how do you paralyze the system that means, how I efficiently get a solution of this
linear system. Then residual that means, how things are converging with time that means,
the error between each of this time iterations or the physical problem the error actually
getting reduced. Then, how quickly I am getting iterations over time these are essentially
connected with my floating point calculation; that means, you have a powerful computer,
you have a efficient numerical technique, you have a programming that can be used to

get more and more solutions per second.

Then the precisions that again has to do with the computer architectures. You have a high
end architecture, you can get better precisions, you have a low end architectures you can

cannot get lower precisions of the solution. And to some extent how you define your



variables in the systems so, the data structures and the variable definition

be the factor how precision I would expect error.
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Some particular problem is a simple problem, we have been talking about the flow over a

channel, now if you put a block like this then this is also going to act like a no slip

problem, flow comes in flow goes out and there are different different flow phenomena,

you can expect in this particular process. And using the numerical technique, you can

solve this particular problem.
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Now, moving at, one thing is there we have been show for talking about the set of partial
differential equations. Now, when you talk about the differential equations, these are
essentially few important information regarding the partial differential equations are
required. One is the order of the equations. The order of the partial differential equation
is determined by the highest order. So, if you look at this particular equation which is in a
terms of del phi by del x and del phi by del y, the highest order which is present is the

first order. So, this is called the first order equation.

Now, if you look at the second equation which is of the second derivative in x, and first
derivative in y, these actually give my second order equation. When you look at this one
particularly, the highest derivative present is the del 3 phi by del x 3. So, that gives you
the third order equation. So, essentially looking at the particular partial differential
equation, one can immediately identify what is going to be the order of equation.
Whether it is a first order whether it is a second order whether it is a third order the then

the linearity.

So, this is generic form of the partial differential equation. When this coefficients this a,
b, c¢ this coefficients are constant. Or function of the independent variable then the
equation is call the linear equation; means, are not constant or not the function of the
independent variable, then they are call the non-linear system. So, any non-linear system

is always hard to deal with.
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Classification of PDEs

Linear second-order PDEs: elliptic, parabolic, and hyperbolic.

The general form of this class of equations 1s:
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where coefticients are either constants or functions of the
independent variables only.

The three canonical forms are determined by the following criteria:
> b’ —dac ~ 0 elliptic v \

> b’ — Jac = 0 parabolic ~

> b’ — 4ac ~ 0 yperbolic -
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Now, if you look at the linear second order PDE now, linear second order PDE could be
classified in these categories. One is the elliptical, could be parabolic, could be
hyperbolic in nature, ok. Now, as I said this is a general form of the equation, where the
coefficients are either constant; that means, this a b ¢ these are either constants or

function of the independent variables.

Then looking at these term or the discriminate b square minus 4 ac one can say whether
the equation is elliptic, then this has to be less than 0. If they are 0, then this is parabolic,
if b square minus 4 ac is greater than 0 this is hyperbolic in nature. Now by looking at a
PDE, one can immediately calculate these coefficients and look at the nature of the
particular differential equation whether it is elliptic in nature, whether it is parabolic in

nature, whether it is hyperbolic in nature.
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Classification of PDEs
PDE Example Explanation
Laplace’s equation: In elliptic problems, the function fx. y) must satisfy
L o both, the differential equation over a closed domain
= =0 and the boundary conditions on the closed boundary
Elliptic s i of the domain.
— Poisson’s equation: o
cx cy
Heat conduction s In parabolic problems, the solution advances outward
Parabolic . Y indefinitely from known initial values, always
- ‘r =% satisfying the known boundary conditions as the
— solution progresses.
Wave equation The solution domain of hyperbolic PDE has the same
. # open-ended nature as in parabolic PDE. However,
Hyperbolic 0 '¢ =0 '¢ two initial conditions are required to start the solution
e =y - of hyperbolic equations in contrast with parabolic
oL ox~ equations, where only one initial condition is
o required.
R
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Now, once you distinguish then they come with the certain system. Now, example of the
elliptic equation; the elliptic equations like your Laplace equation Poisson equation these
are the elliptic questions. Now, elliptic questions are always bounded, and they are sort
with the bounded boundary condition in a closed boundary. So, that is one of the

important condition for the elliptic equation.

Now, when you look at the unsteady heat conduction equation this is parabolic in nature.
Now the parabolic problem the solution always at once out what in final from the known

initial value to satisfying a boundary condition as the solution progresses. Because there



is a unsteady condition. So, the solution is marching over a time, and this is the solution
in marching over time it starts with some initial condition. So, it starts with 5 0 condition,
and then it will move along with the time at time progresses and march towards the

solution.

Now, if you look at the wave equation, they are hyperbolic in nature. Now the hyperbolic
solutions of a PDE open ended little bit. The reason is that solutions are going to go into
different directions. Starting from initial conditions it can actually go into different
directions. So, these are the nature of different different equations, but when you talk

about fluid flow problem what kind of equations they are.
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Classification of N-S eqn

The complete Navier—Stokes equations in three space coordinates (X. V. z)
and time (t) are a system of three nonlinear second-order equations in four

independent variables. So. the normal classification rules do not apply
directly to them. Nevertheless. they do possess properties such as
hyvperbolic, parabolic, and elliptic:
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So, actually when you look at the complete Navier-Stokes equations in space or 3
dimensional space and time. This is a non-linear second order equation with 4
independent variables. So, the normal classification rules do not actually apply directly
to them. But importantly they do possesses properties of all this hyperbolic parabolic and

elliptic systems.

How? Now when the flow is unsteady in visit compressible flown, a compressible flow
can sustain sound and shock waves and the Navier-Stokes equations are essentially
hyperbolic in nature. So, particularly under this condition the Navier-Stokes equation or
the nature of the Navier-Stokes equation becomes hyperbolic in nature. While, if you

look at the steady inviscid compressible flow, the equations are also hyperbolic if the



speed is supersonic, but they are going to be elliptic for subsonic speed. So, if you stay
even inside the Navier-Stokes equation and if you look at the different different
conditions so, that means, the solutions are quite condition depended. So, that is another

challenge is there while solving the Navier-Stokes system.
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Classification of N-S eqn

subsonic _inviscid | There is a possibility
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solution marches in [recirculation. information [example. in a steady
the downstream | may travel upstream as [transonic flow. both
direction. and the|well as  downstream. |supersonic and
numerical  methods | Therefore. specification of | subsonic regions exist.
used for solving |boundary conditions only |Thé  supersonic
parabolic  equations |at the upstream end of the |regions are
are appropriate. flow is not sufficient. The |hyperbolic.  whereas
problem then becomes |subsonic regions are
elliptic in nature. elliptic. _-

Now, some example of the parabolic elliptic and mix flows; patterning into the
application of the Navier-Stokes equation. Now, if you look at the parabolic flow the
boundary layer flow essentially parabolic character the reason is that the solution
marches downstream direction and the numerical method used for solving parabolic

equations are also appropriate.

Now, if you if you look at the elliptical flow the subsonic inviscid flows fall under this
category. Now, these are the or if you look at the only diffusion term in the system they
will be elliptic in nature. Now the mix flow there is a possibility that flow could be
characterized by purely by one type; for example, in a steady transonic flow both

supersonic and subsonic regions exist.

So, the supersonic regions are hyperbolic in nature whereas, the subsonic regions are
elliptic in nature. So, that means, the application of Navier-Stokes equation is also quiet
complicated. And depending on the flow domain flow zone and the conditions or your
extra peripheral conditions things could be hyperbolic in nature, things could be elliptic

in nature, or it could be mix flow in nature.
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Initial and BC

The initial and boundary conditions must be specified to obtain unique numerical
solutions to PDEs:

Following Eq. depicts a problem in which the temperature within a large solid slab having
finite thickness changes in the x-direction as a function of time till steady state
(corresponding to t — =) is reached:

t=9
1. Dirichlet Conditions (First Kind): =3
The values of the dependent variables are specified at the boundaries
in the figure:
Boundary Conditions of first kind can be expressed as e
B.C.1 T=f(1) or Tl atx=0.
S =l el
B.C2 T=T2 atx=L U=AE —
Tnitial Condition i
T=ftx) att=0 O0<=x=<L T
or T=T0 Sl
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Now, when you talk about this initial condition or initial or boundary conditions, you
look at this unsteady heat conduction equation state. So, the equation there must be some
conditions at t equals to 0. This is called the initial condition, ok. Now with this initial
condition the solution should be obtained. And when the t goes to infinity the solution

should is reach to a steady state.

Now, the boundary conditions; the boundary condition this is a one dimensional plate if
you look at it and this is the distance of the plate, and the solution is marching towards
that. So, the boundary conditions could be one kind which is called the dirichlet kind.
And dirichlet conditions means the particular surface, the boundary values are known
which is like this or the other surface also the boundary values are known. That means, at
this particular surface where x equals to 0 at this particular surface where x equals to L,
my conditions are known. So, that means, while you specify a particular condition, this is

known as a dirichlet boundary condition; that means, it is a user defined condition, ok.
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Initial and BC

2. Neumann Conditions (Second Kind)

The derivative of the dependent variable is given as a constant or as a function of the
independent variable on one boundary: 3
ol
ox
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This condition specifies that the temperature gradient at the right boundary is zero
(insulation condition).

Cauchy conditions: A problem that combines both Dirichlet and Neumann
conditions is considered to have Cauchy conditions:
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Now, there is a second kind of boundary condition call the Neumann boundary condition.
The Neumann boundary condition is the derivative of the dependent variable. So, any
particular boundary if you look at these boundary condition, at this particular face the
conditions are the gradient exist then it is a Neumann boundary condition. Now, there
could be another condition called the Cauchy conditions. So, this combines both dirichlet

and Neumann kind of condition, this is a Cauchy condition, ok.
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Initial and BC
3. Robbins Conditions (Third Kind)

The derivative of the dependent variable i1s given as a function of the
dependent variable on the boundary.

For the heat conduction problem. this may correspond to the case of
cooling of a large steel slab of finite thickness “L" by water or oilthe
heat transfer coefticient /2 being finite:

Robbins condition
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Now, third conditions would be Robbin conditions. Robbins conditions is essentially the
derivative of the dependent variable is given as a function of the dependent variable on
the boundary. Typically, this is the conditions what is known as Robbin conditions. If you
look at the k minus del T del x at this particular phase equals to heat transfer coefficients

minus T minus infinity. This is known as the robin condition.
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Initial and Boundary value probs

On the basis of their initial and boundary conditions, PDEs may be further classified into
initial value or boundary value problems. B ———

+ Initial Value Problems:

In this case. at least one of the independent variables has an open region. In the unsteady
state heat conduction problem. the time variable has the range 0 <t < o0, where no
condition has been specified at t = «; therefore, this is an initial value problem. {

v
—
<+ Boundary Value Problems: (_%V?)
When the region is closed for all independent variables and conditions are specified at all
boundaries. then the problem is of the boundary value type. An example of this is the

three-dimensional steady-state heat conduction (with no heat generation) problem. which
is mathematically represented by the equation:
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So, now you come down to the initial value problems. So, on the basis of their initial and
boundary condition the PDEs can also be classified. One could be initial value problem;
that means, when you are solving a time dependent problem or the unsteady heat
conduction problem or unsteady any other problem. The initial conditions must be
provided so, to get the solution over a period of time. So, that is actually brings that to be

initial value problem, so IVP.

Or there could be boundary value problem. The boundary value problems are typically in
steady state in nature and elliptic in nature. When the whole boundary is kind of contain
in a closed system, and the boundary conditions are provided just like a 3 dimensional or
2 dimensional box or cube like this. So, the solution inside this domain will be bounded
by the boundary condition in all these phases. So, that actually get you a boundary value
problem BVP. So, the not only the classification of the nature of the partial differential
equations like elliptic or parabolic or hyperbolic, they can be also initial value problem

and boundary value problem.



Now, if you talk about the Navier-Stokes equation, they do have all sort of conditions.
For certain conditions they become hyperbolic in nature certain conditions they become
elliptic in nature they are also having this initial value conditions and the boundary

conditions.
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Mathematical description

~ Eulerian description - Control Volume (CV) approach

- focuses on specific locations in the flow region as time
passes. Thus the flow variables are functions of position x
and time t =

~ Lagrangian description — Material Volume(MY') approach
- the fluid is subdivided into fluid parcels and every fluid
parcel is followed as it moves through space and time. =

So, get a solution method, you must have this Navier-Stokes equation classified properly
or the solution technique that should take care of the things. Now, when you talk about
this we will also, now look at the governing questions and how they are derived, because
the fluid flow problem are essentially talking about set of partial differential equations.
Like, conservation equation, mass conservation equations, momentum conservation
equation, energy conservation equations. Now since fluid flow systems they could be

classified into two broad categories. One is the Newtonian one is the non-Newtonian.

Now when you talk about the Newtonian fluid flow so; that means, one could be also
Newtonian or non-Newtonian. So, this is coming from the kind of correlation they have
for a particular conditions for the viscosity. How viscosity is correlated with the stress?
So, that will define the Newtonian or non-Newtonian. But no matter what it is or all are
governing system will be in the continuum system. So, all continuum mechanics would
be valid. And mostly we will be dealing with the Newtonian system, but there are fluid
flow systems like flow through the black blazer they are in nature by naturally they are

non-Newton in nature.



Where, the viscosity could be a non-linear function of the shear stress, ok. So, this is the
classification of based on the viscosity with the shear stress relationship. Now also the
fluid flow system could be categorized either 1 dimensional system, 2 dimensional
system, multidimensional system, multiphase system. So, it could be single phase
system, it could be multiphase system, it could be steady, it could be unsteady. So, all

these are different different ways one can classify the system.

Now, essentially when you talk about that, these are leading to the set of conservation
loss which are Navier-Stokes system. Now Navier-Stokes system when you talk about,
they could be defined or the this fluid mechanical system or the conservation laws;
essentially the conservation laws. They are defined in two particular framework. One
could be Eulerian description or control volume kind of approach or other could be the
Lagrangian approach or the material volume approach. That means, in the Lagrangian
approach the whole fluid is sub divided into small small particle, that you track

individual particles. So, that is what it call the Lagrangian approach.

And when we talk about the Eulerian approach, basically you focuses on a specific
location, and in the fluid flow system and as a time goes by you calculate the system. So,
which essentially become the function of x and t. Now particularly this system of a
particular flow variable of the velocity which is the function of time and x, it could be

taken a derivative of the space, this is how they can be correlated.
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Mathematical description
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Now, when you talk about this Eulerian and Lagrangian descriptions; this one give you
an idea about the Lagrangian description and when this particular control system is
divided into subdivided into this small particles. These particles are track with a time. So,
this is at the time instant t, and this is at the time instant t plus delta t so, how you track

the particle that gives you the framework of the Lagrangian system.

But, rather in the Eulerian system, you have a control volume over the material volume,
and then you get the governing from t to t plus delta t and Eulerian system, ok. So, this is

where you divide your system and get the solution.
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Mathematical description
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Now, when you get the solution for the different framework essentially, you get the first
theme is the local derivative. This is one important parameter that you calculate. Local
derivative or you call it a substantial derivative. So, substantial derivative for any
variable or physical variable any physical variable fee, that is what you get the

substantial derivative.

So, the substantial derivative written in D phi Dt equals to del phi by del t, plus since it is
a function of x y z. So, del phi by del x into del x by del t plus del phi by del y into dy by
dt plus dz by dt. So, this is nothing but your velocity component in different direction.
So, if this is your coordinates system X, y, z then these are the velocity component. So, if

I have to write this brings down to del phi by del t u del phi by del x plus v del phi by del



y plus w del phi by del z. In other way, I can write del phi by del t plus v dot del phi,

where v is a vector, which is nothing but your u, v, w.

So, this is my unsteady term all local change. And this is my convective change, ok. So,
essential if I look at this system, let us say I go by X, y, z and this is my particle, which is
here, now is at this point it is xt. So, it moves like to v delta t, at this location this is the
complete action. So, this is at phi t plus delta t x plus delta x, ok. So, this is how with a
time you get this thing. Now if the phi is v then you get dV by dt equals to del d by del t
b plus v dot del t, ok. So, that gives you the Eulerian formulation of the substantial

derivative of the system which connects the local change and the convective change, ok.

Now, when you say that, we will look at the basic transport equation or the Reynolds

transport equation or RTT.
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Mathematical description
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So, from there we will actually get back all other conservation laws. So, it is says that to
get this things you say, they you say that any property or the fluid system. So, the
property of the fluid system is defined as B, which could be mass, could be momentum,
could be energy, etcetera, ok. And b is small b is dB by dm; that is, essentially the
intensive value of the B, ok. Or rather you can say B per unit mass. That is what it is the

specific volume, ok.



Now you have a control volume, and then you have a material volume. So, the density
you say rho is the density. And the velocity scales are b which is a function of space and
time. And there could be the two component of the velocity one could be v s which is the

velocity which is deforming the control volume surface, ok.

And there could be another component which is called v r. So, essentially this is the
relative velocity, ok. So, v r is nothing but my b minus vs tx. So, they are kind of
correlated with each other, ok. Now if I write for a control volume the property of this b
over the material volume. Then there would be a b rho dV plus surface integral b tho v r

dot nds. Now for fixed control volume fixed control volume ds is 0.

So, that brings down to this d dt of b rho db equals to del del t b rho dV. Now this
particular equation then simplifies to dB by dt over the material volume equals to volume

del rho t b rho dV plus surface b rho v dotn d s.
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Mathematical description
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Now, you apply the divergence theorem. So, if you apply the divergence theorem, I can
write down this things as a del del t of rho b plus delta dot tho v b or dV ok. So, one can
write alternatively same expression like in terms of material derivative D Dt of rtho b plus

rho b delta dot v.

So, these are the now that gives me a equation for any property for a fixed control

volume or a material volume. Here we can actually get the different different governing



equations. So, one first thing that we will get is the continuity equation or the mass
conservation equation. Now the mass conservation equation, we have this property
specific b is 1, and capital B would be m. And to have a mass conservation, | write this
equation for a system dm by dt must be 0. So, that get me the system D Dt of rho plus
rho del dot v dV equals to 0, ok. So, to have these things true I get plus rho delta dot v

equals to 0.

So, when you have a incompressible system, then from here so, you can actually derive
that for incompressible system D rho by Dt is 0. So that means, essentially the rho
remains constant. So, this get me back a simple equation del dot v equals to 0. This is

what you get for the incompressible system.

Thank you.



