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So, welcome to the lecture of this  Finite  Volume Method. Now, we will  look at  the

boundary conditions. Now, when you look at the boundary conditions, again when you

talk about the fluid flow system; Fluid flow system essential you are solving, and a very

normal boundary conditions is one of the important boundary condition is the no slip

condition; that means, wall you have a no slip. So, this is the channel which we are

talking about I am solving the channel when the mass come in and mass goes out. Now,

if you want to solve this particular channel through the numerical methods, you need a

boundary  condition.  So,  this  will  be  the  wall  of  the  channel  which  will  be  no  slip

boundary condition; that means, your flow components are 0.

Then if I solve the axisymmetric problem of the channel; that means, if I cut through the

half  of  the  channel  and  put  it  here,  then  this  particular  boundary  the  axisymmetric

boundary condition would be imposed. So, this is the axisymmetric boundary conditions,

and at the outlet there will be outlet boundary conditions, it could be either gradient 0 or

some sort of a conductive boundary condition 0 if it is a unsteady problem. Now, when



you solve a flow around airfoil kind of structures along the span; you sort of periodic

boundary conditions. So, these are the sort of boundary conditions that you use.
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Now, when you look at  the  numerical  things,  numerical  things  mean  essentially  my

PDEs has led to the linear solver of Ax equals to B. So, this is where I have to use

different  linear solver to get the solution.  So now, the solvers could be of the direct

solver; that means, I will get it directly A inverse which is always a tedious task, and not

a easy task, or it could be iterative solver. So, that means, I will get a solution of the A

through iterative process. And the parameter that actually controls the whole business is

under relaxation factor, convergence limit.

Then, how do you paralyze the system that means, how I efficiently get a solution of this

linear system. Then residual that means, how things are converging with time that means,

the error between each of this time iterations or the physical problem the error actually

getting reduced. Then, how quickly I am getting iterations over time these are essentially

connected with my floating point calculation; that means, you have a powerful computer,

you have a efficient numerical technique, you have a programming that can be used to

get more and more solutions per second. 

Then the precisions that again has to do with the computer architectures. You have a high

end architecture, you can get better precisions, you have a low end architectures you can

cannot get lower precisions of the solution. And to some extent how you define your



variables in the systems so, the data structures and the variable definition. So, this would

be the factor how precision I would expect error.
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Some particular problem is a simple problem, we have been talking about the flow over a

channel, now if you put a block like this then this is also going to act like a no slip

problem, flow comes in flow goes out and there are different different flow phenomena,

you can expect in this particular process. And using the numerical technique, you can

solve this particular problem.
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Now, moving at, one thing is there we have been show for talking about the set of partial

differential  equations.  Now, when you talk about  the differential  equations,  these are

essentially  few important  information  regarding  the  partial  differential  equations  are

required. One is the order of the equations. The order of the partial differential equation

is determined by the highest order. So, if you look at this particular equation which is in a

terms of del phi by del x and del phi by del y, the highest order which is present is the

first order. So, this is called the first order equation.

Now, if you look at the second equation which is of the second derivative in x, and first

derivative in y, these actually give my second order equation. When you look at this one

particularly, the highest derivative present is the del 3 phi by del x 3. So, that gives you

the  third  order  equation.  So,  essentially  looking  at  the  particular  partial  differential

equation,  one  can  immediately  identify  what  is  going  to  be  the  order  of  equation.

Whether it is a first order whether it is a second order whether it is a third order the then

the linearity.

So, this is generic form of the partial differential equation. When this coefficients this a,

b,  c  this  coefficients  are  constant.  Or  function  of  the  independent  variable  then  the

equation is call the linear equation; means, are not constant or not the function of the

independent variable, then they are call the non-linear system. So, any non-linear system

is always hard to deal with.
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Now, if you look at the linear second order PDE now, linear second order PDE could be

classified  in  these  categories.  One  is  the  elliptical,  could  be  parabolic,  could  be

hyperbolic in nature, ok. Now, as I said this is a general form of the equation, where the

coefficients  are  either  constant;  that  means,  this  a  b  c  these  are  either  constants  or

function of the independent variables. 

Then looking at these term or the discriminate b square minus 4 ac one can say whether

the equation is elliptic, then this has to be less than 0. If they are 0, then this is parabolic,

if b square minus 4 ac is greater than 0 this is hyperbolic in nature. Now by looking at a

PDE, one can  immediately  calculate  these coefficients  and look at  the  nature of  the

particular differential equation whether it is elliptic in nature, whether it is parabolic in

nature, whether it is hyperbolic in nature.
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Now, once you distinguish then they come with the certain system. Now, example of the

elliptic equation; the elliptic equations like your Laplace equation Poisson equation these

are the elliptic questions. Now, elliptic questions are always bounded, and they are sort

with  the  bounded  boundary  condition  in  a  closed  boundary.  So,  that  is  one  of  the

important condition for the elliptic equation.

Now, when you look at the unsteady heat conduction equation this is parabolic in nature.

Now the parabolic problem the solution always at once out what in final from the known

initial value to satisfying a boundary condition as the solution progresses. Because there



is a unsteady condition. So, the solution is marching over a time, and this is the solution

in marching over time it starts with some initial condition. So, it starts with 5 0 condition,

and then it  will move along with the time at time progresses and march towards the

solution.

Now, if you look at the wave equation, they are hyperbolic in nature. Now the hyperbolic

solutions of a PDE open ended little bit. The reason is that solutions are going to go into

different  directions.  Starting  from initial  conditions  it  can  actually  go  into  different

directions. So, these are the nature of different different equations, but when you talk

about fluid flow problem what kind of equations they are.
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So,  actually  when  you  look  at  the  complete  Navier-Stokes  equations  in  space  or  3

dimensional  space  and  time.  This  is  a  non-linear  second  order  equation  with  4

independent variables. So, the normal classification rules do not actually apply directly

to them. But importantly they do possesses properties of all this hyperbolic parabolic and

elliptic systems.

How? Now when the flow is unsteady in visit compressible flown, a compressible flow

can  sustain  sound  and  shock  waves  and  the  Navier-Stokes  equations  are  essentially

hyperbolic in nature. So, particularly under this condition the Navier-Stokes equation or

the nature of the Navier-Stokes equation becomes hyperbolic in nature. While,  if you

look at the steady inviscid compressible flow, the equations are also hyperbolic if the



speed is supersonic, but they are going to be elliptic for subsonic speed. So, if you stay

even  inside  the  Navier-Stokes  equation  and  if  you  look  at  the  different  different

conditions so, that means, the solutions are quite condition depended. So, that is another

challenge is there while solving the Navier-Stokes system.
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Now,  some  example  of  the  parabolic  elliptic  and  mix  flows;  patterning  into  the

application of the Navier-Stokes equation. Now, if you look at the parabolic flow the

boundary  layer  flow  essentially  parabolic  character  the  reason  is  that  the  solution

marches  downstream direction  and the  numerical  method  used for  solving  parabolic

equations are also appropriate.

Now, if you if you look at the elliptical flow the subsonic inviscid flows fall under this

category. Now, these are the or if you look at the only diffusion term in the system they

will  be elliptic in nature.  Now the mix flow there is a possibility that flow could be

characterized  by  purely  by  one  type;  for  example,  in  a  steady  transonic  flow  both

supersonic and subsonic regions exist.

So, the supersonic regions are hyperbolic in nature whereas, the subsonic regions are

elliptic in nature. So, that means, the application of Navier-Stokes equation is also quiet

complicated. And depending on the flow domain flow zone and the conditions or your

extra peripheral conditions things could be hyperbolic in nature, things could be elliptic

in nature, or it could be mix flow in nature.
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Now, when you talk about this initial condition or initial or boundary conditions, you

look at this unsteady heat conduction equation state. So, the equation there must be some

conditions at t equals to 0. This is called the initial condition, ok. Now with this initial

condition the solution should be obtained. And when the t goes to infinity the solution

should is reach to a steady state.

Now, the boundary conditions; the boundary condition this is a one dimensional plate if

you look at it and this is the distance of the plate, and the solution is marching towards

that. So, the boundary conditions could be one kind which is called the dirichlet kind.

And dirichlet conditions means the particular surface, the boundary values are known

which is like this or the other surface also the boundary values are known. That means, at

this particular surface where x equals to 0 at this particular surface where x equals to L,

my conditions are known. So, that means, while you specify a particular condition, this is

known as a dirichlet boundary condition; that means, it is a user defined condition, ok.
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Now, there is a second kind of boundary condition call the Neumann boundary condition.

The Neumann boundary condition is the derivative of the dependent variable. So, any

particular boundary if you look at these boundary condition, at this particular face the

conditions are the gradient exist then it is a Neumann boundary condition. Now, there

could be another condition called the Cauchy conditions. So, this combines both dirichlet

and Neumann kind of condition, this is a Cauchy condition, ok.
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Now, third conditions would be Robbin conditions. Robbins conditions is essentially the

derivative of the dependent variable is given as a function of the dependent variable on

the boundary. Typically, this is the conditions what is known as Robbin conditions. If you

look at the k minus del T del x at this particular phase equals to heat transfer coefficients

minus T minus infinity. This is known as the robin condition.
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So, now you come down to the initial value problems. So, on the basis of their initial and

boundary condition the PDEs can also be classified. One could be initial value problem;

that  means,  when  you  are  solving  a  time  dependent  problem  or  the  unsteady  heat

conduction  problem  or  unsteady  any  other  problem.  The  initial  conditions  must  be

provided so, to get the solution over a period of time. So, that is actually brings that to be

initial value problem, so IVP.

Or there could be boundary value problem. The boundary value problems are typically in

steady state in nature and elliptic in nature. When the whole boundary is kind of contain

in a closed system, and the boundary conditions are provided just like a 3 dimensional or

2 dimensional box or cube like this. So, the solution inside this domain will be bounded

by the boundary condition in all these phases. So, that actually get you a boundary value

problem BVP. So, the not only the classification of the nature of the partial differential

equations like elliptic or parabolic or hyperbolic, they can be also initial value problem

and boundary value problem.



Now, if you talk about the Navier-Stokes equation, they do have all sort of conditions.

For certain conditions they become hyperbolic in nature certain conditions they become

elliptic  in  nature  they  are  also having this  initial  value  conditions  and the boundary

conditions.
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So, get a solution method, you must have this Navier-Stokes equation classified properly

or the solution technique that should take care of the things. Now, when you talk about

this we will also, now look at the governing questions and how they are derived, because

the fluid flow problem are essentially talking about set of partial differential equations.

Like,  conservation  equation,  mass  conservation  equations,  momentum  conservation

equation, energy conservation equations. Now since fluid flow systems they could be

classified into two broad categories. One is the Newtonian one is the non-Newtonian.

 Now when you talk about the Newtonian fluid flow so; that means, one could be also

Newtonian or non-Newtonian. So, this is coming from the kind of correlation they have

for a particular conditions for the viscosity. How viscosity is correlated with the stress?

So, that will define the Newtonian or non-Newtonian. But no matter what it is or all are

governing system will be in the continuum system. So, all continuum mechanics would

be valid. And mostly we will be dealing with the Newtonian system, but there are fluid

flow systems like flow through the black blazer they are in nature by naturally they are

non-Newton in nature.



Where, the viscosity could be a non-linear function of the shear stress, ok. So, this is the

classification of based on the viscosity with the shear stress relationship. Now also the

fluid  flow  system  could  be  categorized  either  1  dimensional  system,  2  dimensional

system,  multidimensional  system,  multiphase  system.  So,  it  could  be  single  phase

system, it could be multiphase system, it could be steady, it could be unsteady. So, all

these are different different ways one can classify the system.

Now, essentially when you talk about that, these are leading to the set of conservation

loss which are Navier-Stokes system. Now Navier-Stokes system when you talk about,

they  could  be  defined or  the  this  fluid  mechanical  system or  the  conservation  laws;

essentially the conservation laws. They are defined in two particular framework. One

could be Eulerian description or control volume kind of approach or other could be the

Lagrangian approach or the material volume approach. That means, in the Lagrangian

approach  the  whole  fluid  is  sub  divided  into  small  small  particle,  that  you  track

individual particles. So, that is what it call the Lagrangian approach.

And when we talk  about  the Eulerian  approach,  basically  you focuses  on a  specific

location, and in the fluid flow system and as a time goes by you calculate the system. So,

which essentially  become the function of x and t.  Now particularly  this  system of a

particular flow variable of the velocity which is the function of time and x, it could be

taken a derivative of the space, this is how they can be correlated.

(Refer Slide Time: 18:41)



Now, when you talk about this Eulerian and Lagrangian descriptions; this one give you

an  idea  about  the  Lagrangian  description  and when this  particular  control  system is

divided into subdivided into this small particles. These particles are track with a time. So,

this is at the time instant t, and this is at the time instant t plus delta t so, how you track

the particle that gives you the framework of the Lagrangian system.

But, rather in the Eulerian system, you have a control volume over the material volume,

and then you get the governing from t to t plus delta t and Eulerian system, ok. So, this is

where you divide your system and get the solution. 

(Refer Slide Time: 19:33)

Now, when you get the solution for the different framework essentially, you get the first

theme is the local derivative. This is one important parameter that you calculate. Local

derivative  or  you  call  it  a  substantial  derivative.  So,  substantial  derivative  for  any

variable  or  physical  variable  any  physical  variable  fee,  that  is  what  you  get  the

substantial derivative.

So, the substantial derivative written in D phi Dt equals to del phi by del t, plus since it is

a function of x y z. So, del phi by del x into del x by del t plus del phi by del y into dy by

dt plus dz by dt. So, this is nothing but your velocity component in different direction.

So, if this is your coordinates system x, y, z then these are the velocity component. So, if

I have to write this brings down to del phi by del t u del phi by del x plus v del phi by del



y plus w del phi by del z. In other way, I can write del phi by del t plus v dot del phi,

where v is a vector, which is nothing but your u, v, w.

So, this is my unsteady term all local change. And this is my convective change, ok. So,

essential if I look at this system, let us say I go by x, y, z and this is my particle, which is

here, now is at this point it is xt. So, it moves like to v delta t, at this location this is the

complete action. So, this is at phi t plus delta t x plus delta x, ok. So, this is how with a

time you get this thing. Now if the phi is v then you get dV by dt equals to del d by del t

b plus v dot del t,  ok. So, that gives you the Eulerian formulation of the substantial

derivative of the system which connects the local change and the convective change, ok.

Now, when you say that, we will look at the basic transport equation or the Reynolds

transport equation or RTT.
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So, from there we will actually get back all other conservation laws. So, it is says that to

get  this  things  you say, they  you say that  any property  or  the fluid  system.  So,  the

property of the fluid system is defined as B, which could be mass, could be momentum,

could be energy, etcetera,  ok.  And b is  small  b is  dB by dm; that  is,  essentially  the

intensive value of the B, ok. Or rather you can say B per unit mass. That is what it is the

specific volume, ok.



Now you have a control volume, and then you have a material volume. So, the density

you say rho is the density. And the velocity scales are b which is a function of space and

time. And there could be the two component of the velocity one could be v s which is the

velocity which is deforming the control volume surface, ok.

And there could be another component which is called v r. So, essentially this is the

relative  velocity, ok.  So,  v  r  is  nothing but  my b minus vs tx.  So,  they are kind of

correlated with each other, ok. Now if I write for a control volume the property of this b

over the material volume. Then there would be a b rho dV plus surface integral b rho v r

dot nds. Now for fixed control volume fixed control volume ds is 0.

So, that brings down to this d dt of b rho db equals to del del t b rho dV. Now this

particular equation then simplifies to dB by dt over the material volume equals to volume

del rho t b rho dV plus surface b rho v dot n d s.
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Now, you apply the divergence theorem. So, if you apply the divergence theorem, I can

write down this things as a del del t of rho b plus delta dot rho v b or dV ok. So, one can

write alternatively same expression like in terms of material derivative D Dt of rho b plus

rho b delta dot v.

So,  these are  the now that  gives  me a equation  for  any property for  a  fixed control

volume or a material volume. Here we can actually get the different different governing



equations.  So, one first  thing that  we will  get is  the continuity equation or the mass

conservation  equation.  Now  the  mass  conservation  equation,  we  have  this  property

specific b is 1, and capital B would be m. And to have a mass conservation, I write this

equation for a system dm by dt must be 0. So, that get me the system D Dt of rho plus

rho del dot v dV equals to 0, ok. So, to have these things true I get plus rho delta dot v

equals to 0.

So, when you have a incompressible system, then from here so, you can actually derive

that  for incompressible  system D rho by Dt is  0.  So that  means,  essentially  the rho

remains constant. So, this get me back a simple equation del dot v equals to 0. This is

what you get for the incompressible system.

Thank you.


