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So, welcome to this particular lecture on, we will continue our discussion what we have

been doing so far. So, we started doing the Discretization for Diffusion equation. So, we

started with steady state diffusion equation and whatever so far we have done in the front

of numerics is that we have considered the orthogonal Cartesian grid system and derived

our discretized equation for the diffusion equations; steady state diffusion equation and

in the process of doing so, we have looked at the individual term how to calculate the

fluxes, how to convert the governing equation to the final discretized equation and then

we looked at the implementation of boundary condition. 

And when we looked at the boundary condition implementation that time we have come

across three to four different kind of boundary conditions like we have used the Dirichlet

boundary  condition,  we  have  considered  Neumann  boundary  condition,  we  have

considered mixed boundary condition, we also considered symmetry boundary condition.

And for all this respective cases, we have looked at the formulation and the numerics

part like the discretized equation.
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So, in top of that what we have also done is that we when we considered the Cartesian

system, we also took care of the non homogeneity of the diffusivities. And to do the

calculation for the Non-Homogeneity, we have come across the formulations or different

methodology  how to  take care  of  the  differences  of  the non homogeneity. And then

finally, what we have discussed or rather stopped in our last lecture is the calculation for

the Interface Diffusivity. And interface diffusivity is an important parameter. When you

have the  variation  of  the  diffusivity  coefficient  along the  space,  then  there  is  a  non

homogeneity and you need to take care of that. And then, we can calculate the interface

diffusivity thorough different approach.

One simple approach was to consider the arithmetic mean and the second approach that

we have considered the harmonic mean. So, these are the two approach that we have

discussed. And both of them do have certain advantage and certain limitations of the

applications.  Like in top of the non homogeneity;  if  there is  a sharp gradient  of the

diffusivity coefficients across the cell interface, then the arithmetic mean may lead to a

erroneous result; in that case if it is more preferred to use some kind of a harmonic mean.

So, and that is where we have discussed these two things. And now once we have done

all these though we will move to the next level of discussion for the formulation on Non-

Cartesian Orthogonal system.

So,  what  we  have  done  Cartesian  orthogonal?  So,  everything  is  restricted  to  the

discretization of the diffusion equation. So, after we conclude or wrap up this diffusion

equation, we will move to the next set of system is the convection diffusion. So, in this

context, we have done the Cartesian orthogonal system which is probably the simplest of

the system because here you have all the points which are orderly placed, the cells are

orderly placed. And you can actually track the local indexing and global indexing in a

simple fashion. And then from Cartesian orthogonal system, we will move to the non-

Cartesian orthogonal system.

So, that will be the next level to do that, in order to do that and that case also we have to

implement the boundary conditions. We need to take care of the diffusivity coefficients

which is varying along the space. So, what just; let us consider an example of a non-

Cartesian system; this is the example of a non-Cartesian orthogonal grid system.
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So,  here  why  we  call  it  non-Cartesian  because  if  you  look  at  the  grid  pattern,  the

important thing to note here is that the discretizing indexing which is shown here these

are all discretized indexing. And discretized indexing, they follow the similar pattern like

the direction pattern that we have adopted for this particular class.

So, this is what or rather one can say that. This is more a standard notation for any finite

volume formulation. So, you consider a element C and then ahead of that element is a

standard notation of that element is east element, then the top of that or in the northern

side is the north element.  Then behind that element is the west side element and the

underneath or the down of that element is the south element and respective surfaces are

identified like E N W S. And all other S f are surface vectors. So, these are all standard

where f stands for small e w n and s.

So, these are all standard notations that we are using and, but now this system is non-

Cartesian. The reason is if you look at it this is our standard reference frame x and y

system and this has been opted by an angle theta. Now if you that is why it is a non-

Cartesian system, but still  this is orthogonal.  The reason is that when you consider a

particular  elements  C,  then  all  the  surface  vectors  or  the  other  elements  like  the

surrounding elements;  they are nicely ordered. Only difference is that the whole grid

system has been shifted by a offset or by an angle theta. So, that is why it is a non-

Cartesian system, but still it remains in the orthogonal mode. And the so, that allows to



calculate the fluxes and all these things in a simpler fashion that like what we have done

for our orthogonal system Cartesian orthogonal system.

Now, to come back to the system, we consider the one row of element. So, that if you

look at it;  essentially it is in a two dimensional system here. It is a two dimensional

Cartesian system or two dimensional orthogonal system. So, from here you come down

to 1D system and if you come down to 1D system, here you see the element C sitting

here. And then, east is only one element, west one element. These are the normal vectors

surface normal vectors and then along this direction you have a normal vector and there

will be a tangential component of the vector. The reason is all these stencil. It has been

offset  by  your  standard  reference  frame.  And  the  other  definition  like  the  distance

between the cell is delta x E in the y direction delta y c and also even non-Cartesian

system the delta x E; if this is let say delta x E, they are equal.

So, delta x C must be equal to delta x. So, that uniformity is maintained only thing it is

different from our previous Cartesian orthogonal system is that it has been tilted by an

angle. And if you consider the this also this would be also same. So, delta y C must be

same with delta y south or delta y, this is delta x west. So, that maintains the uniformity.

And now if you look at this distances, the distance between c and e which is D CE; so,

that is essentially the distance with a normal vector. So, that will get you that thing and

similarly you get the surface vector S e, you get the west opposite in sign. So, you get

both  these  things  and  since  its  one  dimensional,  we  can  get  in  a  two  dimensional

similarly S n and S s.

So, that will follow the standard procedure that we have adopted. So, the now if you look

at the discretized equation, so this would be essentially look similar to our Cartesian

system and we can derive  that.  So,  how we can derive that?  We will  start  with our

equation. So, that is our standard equation delta dot J equals to Q. Now this would be

once you write over the elements C, this will turn out to be the surface integral where f

goes from N b c minus gamma delta phi f dot S f Q c V c. Now each face we need to

calculate the fluxes

So, once you try to calculate that J e dot S e, this would be minus gamma e delta phi dot

n e S e. So, that will be essentially now minus gamma e del phi by del n at east face with

S e ok.
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Now importantly here this delta dot delta phi dot n at this east face is, but del phi by del n

at east face. Now this is the gradient of phi at face e along the n direction. Why we say it

is n direction? If you look at this the picture here, this is the n direction; that means, the

normal direction and this is the tangential direction. So, normal and tangential directions

are estimated.  So, again what one can do the simplest  of the thing that you one can

assume the linear variation in the profile of phi.

So, if you assume the linear variation of the profile, then you can get the del phi by del n

at surface e is phi E minus phi C divided by d C E ok. So and why this is possible?

Because this is possible for the reason the orthogonality is still there. Now rest of the

calculations for finally, obtaining the discretized equation. So, rest of the calculation are

exactly similar as we have obtained for Cartesian system Cartesian orthogonal system.

So, this is the important point.

So, rest of the derivation one can basically reproduce the as we have done for this case.

Now so, what we have looked at this moment is that two important thing. One is that we

have  got  our  discretization  of  the  diffusion  equation.  So,  essentially  we  are  getting

diffusion equation the discretized one using our numerical  approximations.  So,  while

doing that we got it for Cartesian orthogonal system. So, you have got it in details, then

we got it for non-Cartesian orthogonal, then we can go to non orthogonal unstructured

system.



Now, when  we  move  to  non  orthogonal  unstructured  system,  the  things  would  be

different, why? Because in the Cartesian system as long as they are orthogonal, they are

actually easy to handle because the elements or the cells they are nicely ordered. As soon

as we go to unstructured that we have already come across or seen looking at the finite

volume means that they are not nicely ordered. They are rather randomly spaced. So, one

has to keep track of lot of information starting from its elements, faces, nodes and among

them the connectivity through local indexing and global indexing ok.
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So, once we go to unstructured system. So, these are non orthogonal unstructured grid.

First we consider the Non-Orthogonality. So, you first consider the non-orthogonality

and to deal that the essential component would be the gradient calculation. So, let us

consider these system for non-orthogonality. So, let us consider one particular elements

C. So, this is in non orthogonal mesh ok. So, we have just considered one cell and then

the neighbouring cell F. Now here they are not orthogonal. So, at the face the surface

vector S f, this is the surface vector which goes in the normal direction to the face. So,

this  is  my face and this  n  is  perpendicular  to  that  f.  And along the face,  this  is  the

tangential direction. So, this is my normal direction this is my tangential direction.

So, at the face we got two different directions. So, one along this and the connecting

points between these two cell centres are connected through the line that is the distance

between these two cell d CF. Now these lines which are also going through the point F at



the face. So, initially we consider they are actually sitting on the line or rather they are

going to be sort of collinear. Then the normal vector is offset by a angle theta from this

line.  So, as it  clearly shown this  is going by a angle theta.  And now so, writing the

gradient in this case as a function of these information show the gradient still would be a

function  of  phi  C  phi  F  and  some  other  component  because  due  to  the  north

orthogonality.

So, now one has to write the exact expression for this connecting centres and the for

element C. So, orthogonal grid what do we have obtained if you just recall from the

orthogonal grid, what do we have got. So, if it is the gradient in the normal direction, so,

orthogonal grid the gradient in the direction normal to the face. So, what we have got del

phi dot n at face equals to del phi by del n at f which is phi F minus phi C divided by sort

of  r  F  minus  r  C which  is  one can  write  phi  F  minus  phi  C divided by d CF. So,

essentially this is the distance vector between these two cell centres.

So here, why we can write that? We can write here because C F and n; n is the unit

normal vector which is the n is one can say that n is unit normal vector to f the face. So,

C F and n are aligned ok. So, that is why we can write these things and connecting the

points C and F, we can obtain these things. Now, if e which represents the unit vector

along the direction defined by the line connecting C and F, so, e actually defines the

normal vector or unit vector along the line C and F which are joined along that. So, e

actually represents the unit vector.

So, once we do that we can actually define the e; e would be r F minus r C that is the

difference between the radius vector minus r C which is d CF divided by small d CF ok.

So, that is what it is. So, essentially this is the mod of that. Now you can find out the

gradient along the direction. So, the gradient along e; so, this would be del phi dot e at

face is del phi by del e at face which is phi F minus phi C divided by r F minus r C which

also one can write that phi F minus phi C divided by small d CF. So, that is the vector.
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Now, if we linearize the flux, so linearize the flux in this particular system in this non

orthogonal system, then the surface vector which was defined here the surface vector s f

the s f will have two component. So, surface vector will be decompose in two component

one is the E f plus T f. So, these are the two component that one needs to essentially

decompose this surface vectors. And then what happens that I can write down the total

surface vector in that fashion where one can think that E f would be in the direction of

CF and; that means, they are connecting these two point. So, if you look at this Sf, one

component will go along this which will be S f some sort of a cos theta component, then

other one will go along the tangential component which will be the sine theta component.

So, there are two components. So, now if I write down my diffusion flux, so there will be

del phi f dot E f that component plus because s f is the sum of these two component. So,

it would be del phi f dot E f plus del phi f dot T f ok. So, if you look at it this is along the

direction of the C F. So, these part or this guy is nothing, but my some sort of n. So, now,

I have connected these two points C and F and the component which is going the surface

vector  has  two components:  one going along these  direction,  another  is  going along

tangential direction. So, this one, the one which will go along this direction e, they will

be similar to our orthogonal like orthogonal contribution.

One can think about in that fashion because this is my cell which was connected C F.

They are connected from here this is goes my S f. This goes my E f this goes my T f. So,



that is how the components are decomposed. So, this one can think about along this line

which is the line connecting between centre C and centre F, this will be looking like a

orthogonal contribution. Now what about this term? This term is another term which will

look like an or non orthogonal contribution. So, this is the first term first term will look

like an our orthogonal contribution which actually the component of the surface vector

goes along this unit vector of e, other one goes along this direction which is the non

orthogonal contribution.

Now, if you compare to our orthogonal system, this is where the non orthogonal system

starts  debating from that. You do not have any contribution from the non orthogonal

system. So, one can write or expand this term in a slightly more detail E f. This would be

del phi by del e f plus del phi f dot T f. So, this one can write E f phi F minus phi C by d

CF plus del phi f dot T f ok. So, these component actually involves the information of

these two cells centre C and F and this is exactly looking like our contribution which we

do get in our orthogonal system.

But this extra term which was not present, sometime this is also referred called the cross-

diffusion term. In some text book they call it an orthogonal contribution, some textbooks

call  it  a  cross  diffusion  term  or  cross  diffusion  contribution.  So,  this  is  where  the

difference starts appearing between the orthogonal system and a non orthogonal system.

When you have a purely orthogonal system, you just get these contribution and when

you have a non orthogonal system, you get this contribution and plus this contribution.

So, this is the difference.

Now, one can think about in a other way the orthogonal system is a special case of non

orthogonal system, why? Because if the non orthogonal system, this contribution goes

off then it turns out to be an orthogonal system; that means, essentially one can derive

and discretize equation for a non orthogonal system. And then can be used for both non

orthogonal  system  and  a  orthogonal  system  by  assigning  that  term  like  the  non

orthogonal contribution term to be zero. 

So, that is the one of the beauty of finite volume method that things can be more generic

in nature and once we go along with the complexity, you can see that the higher level

things can be always simplified to the lower level one. Though we are starting from the



orthogonal system, then moving to a non orthogonal system; the non orthogonal system

can be boils down to orthogonal for a special case as it is here ok.

Now, the point comes how do you decompose this S f? When you decompose this S f or

if you put back the S f you get this particular equation. So, we will stop here and.

Thank you.


