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So, the last lecture we have discussed about this boundary condition. Now, we will move

from  here.  So,  2  types  of  boundary  condition  that  we  have  discussed  one  is  the

dirichletand, the Neumann. Now, we will see how you find out the accuracy level?
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Because, that is one of the important criteria so, what you are trying to get is that, if you

have a let us say element like this which is centre c, and the coordinator is x c and you

are moving to a point which is called x.

So, function would be phi x and you have all these connecting phases sitting there ok.

So, you have all the terms since it is an element c you have phi c delta phi c you have

delta delta phi c all these are there. So, what you can see phi x which could be phi c plus

x minus x c dot delta phi c where your phi c is phi x c. How do you get the spatial

variation? So, first you look at the spatial variation; that means, it is again it would be

similar kind of or rather same Taylor series.

But, we will now write it explicitly phi x equals to phi c plus x minus x c dot delta phi c

plus x minus x c square 2 double dot del del phi c plus 1 by 3 factorial x minus x c cube

del del del phi c plus. So, on and you can have x minus x c to the power n. So, this would

be multiplied of n minus 1 times del del del phi and this should be n times.

So, x minus x c is the essentially the distance vector between these 2 points and if you

look at  this  del  del  c del  del  triple  del c this  will  return the second derivative third

derivative nth derivative like that ok. Now, this is how you express your spatial variation

getting  or  given  a  value  at  centroid  c.  Now,  mean  value  if  you  do  mean  value

approximation what is that. So, I am calculating phi c bar which will be nothing but my



Vc integration of Vc phi dv. So, that I can write 1 by Vc Vc phi c plus x minus x c dot

delta phi c plus order of x minus x c square d v.
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So, if you write phi c by Vc Vc dv plus 1 by Vc Vc x minus x c dot delta phi c d V plus 1

by Vc Vc order of x minus x c square d v. So, essentially if you look at it, it turns out to

be the mean value approximation is phi c plus order of x minus x c square so; that means,

the mean value approximation what you get this is a very important term which is your

second order accurate.

Now, this should be a very important calculation to have because when you calculate the

other derivatives and other terms, in the as explicitly, in finite volume formulation. So,

you can estimate the order of accuracy and all this now similarly you can have the fluxes.

Let us say convective fluxes approximated and see the order of convective flux. So, you

just take this side of the element and this is the c this is the face f. So, this is f so j f dot s

f is rho v phi dot s f so that my convective flux ok.

And my diffusive flux would be minus gamma del phi f dot s f. So, that is my diffusive

flux.  So  these  are  2  components.  Now,  if  you  look  at  the  convective  flux  so  the

convective flux you have rho V f dot s f phi f. So, essentially this is integration of f rho V

phi dot ds rather you write the rho f Vf phi f plus x minus x f dot delta phi f plus order of

x minus x f square dot ds. And then, if you segregate this out you right rho f Vf phi f dot

f ds plus integration x minus x f dot delta phi f rho f Vf dot d s plus f order of x minus.



So essentially in a Taylor series expansion, you just written 1 or 2 term initially and then,

truncated the higher order term. So, this will actually get you back rho f b f dot s f phi f

plus order of x minus x f square. So, again if you look at the higher order term sitting

here, this is second order that accurate. So, what you got once you calculate the mean

value  at  the  cell  centre.  So,  that  also  second  order  accurate  once  you  calculate  the

convective flux that become second order accurate.
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Now, you can look at the diffusive flux. So, what accuracy it possesses. So, the diffusive

flux you have f gamma delta phi dot ds. So, you can write over the surface gamma delta

phi f plus x minus x f dot delta gamma delta phi plus x minus x f square dot ds, if collect

the term in the right hand side.

So, the first term will get you back the gamma dell phi f dot f ds plus f x minus x f ds dot

product of the tensor delta gamma delta phi plus order of x minus x f square. So, if you

collate, so this will be gamma delta phi f dot s f plus order of square ok. Again, the

higher order term sitting here is the second order accurate so; that means, if you use this

particular  approach  and  discretize  the  system  essentially.  The  generic  finite  volume

discretization gives you back all the convective diffusive terms are of the second order

accurate  one  can  always  achieve  higher  order  accuracy.  So,  that  case  higher  order

approximation you have to use.



So, if you want to do that so you can get the integration of phi ds with some sort of a

weighting function like this. So, you can achieve higher order system, but in general all

finite volume discretization return you back the second order accurate system which is

handy to work with the generic finite volume system, but one can always achieve the

higher order system with this kind of a approximation. These get you an idea about the

steady state system if you move to the transient system.
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So, what happens to the transient equation ok? So, the transient equation you integrate

over now time along with space. So, your transient term will be integrated over a small

interval of delta t and this term now will be returned the (Refer Slide Time:14:22) term

and the other term will be also integrated over the time. So, these are my convective

fluxes minus t plus delta I will get diffusive fluxes gamma delta phi f dot ds. So, you get

now along with the spatial variation you get the integration d1 over temporal variation

also.

Now, this term previously we have dropped out, now this is the unsteady term or the

term which will be written and this should be equals to your generic source term. So, if

you compare between the steady state and the transient system except this particular term

and the integration over time. If you drop out everything else has been integrated and

you obtained a linear system for the steady state system. So now, when you move to the



transient system, now you have integration over time. So now, you have to simplify each

term so first you look at the unsteady term what happens to that ok.

So,  once  you  do  that  integration  of  the  unsteady  term.  So,  that  get  you  back  the

integration of so, that is essentially the integration over the time interval t plus del t rho

phi by del t Vc dt. Now, we have already seen the mean value approximation for this. So,

this is nothing but rho phi dv which we can write second order accurate system. So, that

is the mean value approximation that we have seen so, if I put this back what I will get.
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I will get that integration over time with the first term sitting there Vc dt plus integration

over time summation of the convective fluxes f rho V phi dt minus the diffusive fluxes, f

gamma del phi dt equals to the time integration of the source term ok.

So, each term now retains the integration of dt and you get the integrated system like

this. So, the whole objective here is that from this system so if you recall this is a kind of

element  we  are  dealing  with  I  mean  it  could  be  something  else  and  it  has  some

surroundings cells. So, these are F1 F2 F3 F4 F5. So, it could be 4 faces 6 faces does not

matter now essentially all these integration is d1 over an element. And then from here

you get back the linear system and from the linear system you finally, solve the problem

of the linear equation.



Now, using some midpoint rule you put it back. So, using the midpoint rule you get this

equation.  Now, t  plus delta  t  del  del  t  rho phi  Vc dt  plus  t  plus delta  t.  So,  if  gets

summation of faces rho V phi minus t plus delta t equals to. So, you get a simplified

system now from here you can always get the algebraic expression which will lead to the

system of linearized equation. Now, there are certain things for your numerical method

should have one of the or rather some important properties of discretized equation ok.
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So, what we are doing here we have PDEs now PDEs are discretized to get linear system

ok. Now, this descritization process you must have and this is where we have applied our

numerical technique of finite volume method. Now, one of the important property that

we  have  also  discussed  about  the  conservation  ok;  that  means,  all  the  conservative

quantities like mass energy etcetera. They must be conserved even after discretization.

So, what is important here is that we start with our mass equation energy equation.

I  mean  basically  momentum  equation  energy  equation  continuity  equation  all  this

conservative properties like mass, energy all this things. They must be conserved in the

discretized equation. You cannot afford to lose the conservation property this is one of

the very, very important of fundamental property of this second is obviously. So, first

thing I have one has to make sure that the physical properties or conservative properties

are properly conserved when you move from the differential equation to the discretized



equation. So, they cannot be afford to lose any conservative property second important

property that comes out to be the accuracy ok.

So,  this  is  again  it  essentially  refers  how close  a  numerical  solution  is  to  the  exact

solution. So, this is where actually you come down to the accuracy of the system and in 1

or 2 lectures before we have talked about the accuracy and how do you achieve and just

right now, you have also seen how one can actually get the and this essentially, means

that  order of truncation error ok.  And we have seen that,  when you do final volume

discretization all your mean value convective flags diffusive flag everything is of second

order.

So, the higher order term in the truncation expression or truncated expression will lead to

the accuracy of the system ok. So, more and more order is I mean the higher order term

is retained in the expression; you get higher order expression for your numerical scheme.

So at the other time, also one can increase the accuracy by reducing the grid spacing. So,

I mean since these are leading order term would be of some delta square delta cube of

something if you have a small delta or the grid spacing is less. So, this will reduce I

mean reduce the error and you can increase the accuracy.

So, third is that so this is where the accuracy is essentially has to do with, how you have

discretized your partial differential equations. And what kind of approximation you have

made. So, the approximation made and the leading order term that are kind of truncated

of from your Taylor series expansion, will lead to the third important property is the

convergence. So, that is again has to do with the solution algorithm or process so one

may  say  my  solution  has  converged  so;  that  means,  when  you  do  some  physical

iterations and the error between the process of the values. They are not changing one can

argue that solution has converged.

So, sometimes it is also used for the transient calculation when people say the solution it

not converts for the time discretization. So, it has to do with both spatial convergence

and  spatial  and  temporal  convergence  ok.  So,  this  is  how  one  can  talk  about  the

convergence.  Now,  4th  property  which  is  again  going  to  be  very  important  is  the

consistency  of  the  system  consistency  of  the  system;  so,  that  essentially  when  you

approximate your PDEs to an algebraic equation.



So, this is a approximation when you do that how consistent it is, is essentially at each

point in the solution domain. The numerical solution approaches towards exact solution.

So, that is essentially means that whatever you have the discretized error that approaches

to 0 and the decretization error comes from essentially. The primarily the truncation error

and also the some sort of a numerical errors I mean round off errors.

Now, 5th property which is also very important is the stability ok. So, the stability is that

something, when you talk it is the characteristics of your discretized equation ok. So, this

has  to  do with  the  stability  that  means,  it  is  a  very, very  inherent  property  of  your

discretized system. How you can say when because the discretized systems only will

finally, take you to the solution. So, the part of the solution is be important and that can

dictate without the solution is stable or not.

So, it has to do with both the discretized systems and the solution process. Now, and their

properties that your scheme and all this process should be also cost effective; that means,

I  should  have  some  algorithm  or  code  that  must  be  economical;  that  means,  here

economical does not mean in terms of money I mean it directly not in terms of money.

It  essentially  in  terms  of  the  computational  overhead;  that  means,  how  much

computational cost is associated with this particular algorithm or the code that you have

obtained and how do you have obtained that you have the PDS. You discretize the PDEs

get a linear system you have a linear solver and when everything is actually put together

through a programming language. And you get a either a sequential or paralyzed version

of  your  code that,  is  when you use that  particular  code to  solve a  problem you can

actually estimate whether, it is cost effective or not. Because, it depends how much time

it takes to do the calculation.

Thank you.


