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So,  welcome  to  the  lecture  of  this  finite  volume  method.  Now,  we  can  actually

approximate how many number of points you can have.
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And so, for example, let us say you get this particular C element and you have the faces

1 2 3 4 5 6. This is the centroid of that element and your neighboring F 1 to get this flux

integration I have one integration point. So, as I have mentioned that i p refers to the

integration points and i p f is the number of integration points along the surface f.

So, this is a particular surface, let  us say which is connected with F 1 and I have 1

integration points. So, that means, in this case i p is 1 and also w ip would be 1. So, I get

a  nice  calculation  for  the  flux  calculations.  Now, one  can  have  multiple  integration

points. If you have multiple integration points, then what happens?
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Let us say, you have 2 integration points along the surfaces ok. So, every connecting

surface will have 2 integration points 1 and 2. So, in this case, i p is 2. So, if i p is 2, now

my weighting functions are going to be different and then, I can get 2 different numbers

x i 1 and x i 2. These are the and waiting function w 1 equals to w 2 equals to half.

So,  the previous case I  had one integration point.  So, w 1 was 1 this  case I  have 2

integration point. So, the waiting function would be half and half and this xi 1 and xi 2

dictate the distance from one particular point to f 1 and then other side f 2. So, they are

the distance.
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Similarly, you can have 3 integration points. So, that case, my i p would be 3. So, if you

have 3 integration points, i  p would be 3. Then, obviously, my waiting function w 1

would be 5 by 18 w 2 would be 4 by 9 w 3 is again 5 by 18.

So, if  you look at  that  waiting function,  they are equally sort  of distributed then the

distances would be x i 1 is 5 minus root 15 divided by 10 x i 2 is half and x i 3 is 5 plus

root 15 divided by 10. So, these are the distance from one point to the other points ok.

So, essentially what I got is that, rho v phi dot ds. It get me back the summation of f this

is faces over v. So, i p over i p f w i p rho v phi i p dot s f.

So, that is what you get and similarly, for gamma del phi dot ds, that is my diffusive

term. So, you get f faces over v and i p i p over f w i p minus gamma del phi ip dot s f.

So, this is what you end up getting and the source term you can always calculate by

doing the integration like, the source term you can always get q dv equals to summation

of i p over v q i p w i p v. So, that is the way you get the source term integrated. So, then

you can and i p and all these will depend how many integration points you have over the

surface, ok.
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Now, you can get the similarly, the volume integration points with 1 integration point.

So, basically the volume integration of source term. 
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Similarly, you can have one point you can essentially, one point means here, you could

have 4 integration points. Now, other case you had the points along the surface. Now,

when you try to get the volume integration, you need multiple points inside the element

of  the  volume.  So,  you could  have  1  point  to  integrate,  you could  have  4  point  to

integrate  ok.  So,  or  you  can  have  more.  So,  if  you  have  it,  then  accordingly,  your



calculation of these x i and w i p they will be different. So, and you can also, I think you

can have the 9 integration points.
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So, it depends so all these points. So, i p can actually vary accordingly your w i p will

also vary and. So, your integration that you have got here like for the source term that Q

dv, this is your volume integration of that. So, that will have the i p v q ip w i p v. So, this

actually represents that how many points I have inside that volume. And, that is why this

loop goes from number of points inside the volume. So, the difference remains between

flux and the volume is that in the flux calculation. The number of points, they are varied

along the faces, when you come down to the source term integration which is a volume

integration, the number of points varying within the cell ok.
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So, after getting all these done, if you look at that particular element C and you have all

these neighboring elements  and they are connected with the faces.  So, my transform

equation, transformed equation become obviously, over element C that would become

like f nb of c rho V phi minus gamma del phi dot S f equals to Q dot Q c V c ok. So, that

is my transformed equation.

So, what I started off? I started off a differential equation of steady state equation of the

scalar transport equation. Now, I have written algebraic system. This is nothing, but the

integration over the faces because, these are the fluxes. So, that means, it will go from 1

2 3 4 5 6. So, all these fluxes to be integrated. Now, another thing that one may wish to

do is the linearization ok. So, you can linearize the system and so, how do you linearize

the fluxes? You had this total flux J f dot S f. So, you can actually, you can say, this is the

total flux T f, that is total flux and that can be realized as the flux C f plus flux F f plus

flux V f.

What do they stand for? So, this essentially means, my total flux for face f if I consider, f

1, then my total flux should be this, is essentially my J f phi, that is the that includes both

the component ok. So, that has both convection and diffusion. So, this represents total

flux. What is this? This, this term actually represent the flux linearization coefficient for

element C; that means, this is the element which I am interested in and trying to get the



equation integrated over that. So, when I do the linearization because, this is the total

flux along this face and this face is connected with face F 1.

So, one contribution comes from the linearization coefficient of this particular element

along this face. So, the second is that flux linearization coefficient for f or you can put

element f for element f. So, if you are talking about this flux. So, mind it, that we are

talking about total flux for a particular face.

So, the total flux linearization at f 1 must be different from f 2. But if you look at only

one particular face, again if you look at this equation where you have the total system

which is integrated to the linear system, I mean algebraic system you have a loop over all

the faces around that particular element. For this particular example, you have to have

this loop go over from 1 to 6 because you have 6 faces.

Now, once you go down or come down to each of these faces now if you can look at

each fluxes. So, along one particular face it needs to be linearized between this element

and this  element.  So,  one  coefficient  come from this  another  coefficient  come from

element F and then you have a component which is called the non linearized part so, you

get 3 component ok.

So, the total flux along a particular face is decomposed in essentially 3 components; one

component  come from the element  itself,  the coefficient  of  the linearization.  Second

component come from the linearization coefficient of the neighboring or the connecting

cell along that face and third coefficient is the non-linear part.
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So, if you look at all this 6 faces, you will have this components ok. Now, if I essentially

write down that equation, which is going for this element dot S f ok. So, this would be

nothing, but my f the total flux ok. So, that means, this equation left hand side of the

equation, I am writing at the total flux. So, this nothing, but the f over that element you

have flux C f phi C plus flux F phi F plus flux V f; that means, if I come down to face 1,

this would be flux C 1, I mean the coefficient of C 1 phi C coefficient of f 1 phi f flux V

1 ok.

So, for all the faces you can write down and then, I have the source term Q c and V c

equals to essentially the total flux. So, if you write down the flux C phi C the flux F phi f.

So, it is a linearized equation ok. Now, if you have let us say, constant source term, what

happen? The constant source term So, I am again writing the source term. In this kind of

fashion  the  contribution  coming  from  the  C  element  contribution  coming  from  the

neighboring element.  Constant  source term means flux C would be 0.  So,  sorry this

should be this is flux V. So, my Q c V c is equal to flux V only ok.

Now, if you substitute everything back in this particular equation ok, if you substitute

everything back there, you get phi c a c plus summation of this integration a F phi F

equals to b c. So, essentially this expression and this expression both of them are, if you

collect them together, you get this and what a c stands here? A c is f n b c flux C f minus

flux C and a F would be flux F f and so, b c is nothing, but summation of f over this



element flux V f plus flux V. So, what you have here? And here, if you put them together,

then you get this. So, this is nothing, but your linear system and if you put them in a

matrix form this is going to get you back the A X equals to B ok.

So, the thing is that over a particular element C you integrate your equation.  So, the

integral equation will look like that and once you compute all the fluxes and put them

together, so you get back this system. Now, here you get a linear system like this, you

cannot solve without having the.
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So, once you need to solve this linear system, the important ingredients are to have the

boundary condition ok. One is the boundary condition which will fit to the system and

then, the linear solver. Here, you can have direct solver, you can have iterative solver ok.

So, we have already discussed in a, I mean very quickly what kind of solvers. But, in

details, we will do later on in a due course of time. But now, let us look at the boundary

condition. How do you implement that? So, first, one important condition is that your

have  a  the  value  is  specified;  that  means,  in  other  words,  you  say  it  is  a  dirichlet

boundary condition ok. So, if you have a cell like this, what you had like and then you

have a point here. Now, this is your c center and this is connecting and this would be the

normal ok. And this is where your phi b this is the boundary surface this is t, this is

specified ok. This is the point b and this is e b ok.



So, if phi b is specified, then I should have phi b equals to phi b specified ok. Then, at

that particular face, this is the boundary face, this is the boundary face my J b phi dot S

b. This is the, if you look at this integration, so, at that particular face, this will become J

b phi dot S b. So, which would be if you just say the convective part rho V phi b dot. So,

this is flux C b phi c plus flux V b. So, this will get you back rho b V b dot S b phi b

which is nothing, but m dot f phi b specified. So, you can have flux C b is 0 and flux V b

is m dot f phi b specified. So, you get that value.
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So, once you have that value, then now, the second type of boundary condition would be

specified flux ok; that means, called the Neumann boundary condition. So, if you look at

the same element here, this is the center. Then you come this is the normal this is e b, this

is point b, this is t, this is where q b specified ok. So, once you do that, then your J b phi

dot S b would be J b phi dot n b S b, ok.

So, this is your specified flux. So, which is nothing, but q b specified S b ok. So, my flux

C b is 0 and flux V b equals to q b specified S b. So, these are the 2 type of conditions

that you can specify at the face. So, now, we will continue from here in the next lecture.

Thank you.


