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So, welcome to the lecture of this Finite Volume Method. Now, similarly if you look at

the second derivative that means, f double prime. Now f double prime you look at in

again 3 different ways and you see what happens. So far we have been talking about only

f prime, f double prime if you look at central differences so, this can be written as del 2 f

by del x 2. So, my stencil is like this. I have i, I have i plus 1, I have i minus 1 and these

are all delta x; that means, essentially uniform spacing.

So, if that is there, so, similarly I evaluate second order derivative del 2 f by del x 2. It

just like writing all these Taylor series expansion, f i plus delta x f i prime delta x square

by 2 f double prime, ok and f i minus 1 equals to f i minus delta x f i prime plus delta x

square by 2 f i double prime. If you add and take this out then this guys goes off and you

take them together. So, you get an expression f i plus 1 plus f i minus 1 equals to 2 f i

plus delta x square by 2 f i double prime.

So, if you take that and the terms which are written there, so, third derivative would be

plus and minus. So, they will cancel up and the term which will be written is order of x



square;  that  means,  even  using  3-point  stencil,  the  second  derivative  using  central

scheme is second order accurate, ok. But at the same time if you use this 3 point and try

to capture the forward difference, then you use not only i plus 1 and i minus 1 you use

one point ahead of it i plus 2. So, i plus 2 would be like if I try to write i plus 2 this is

nothing but i plus 2 is i plus 2 delta x f i prime plus 2 delta x square by 2 f i double prime

and so on. If you take that, so, essentially f i plus 2 minus 2 f i plus 1 plus f i by, but

important thing is there.

Similarly, for backward difference you use i minus 2, but important point is here. So,

irrespective of that stencil; first derivative or second derivative if you use whether 3-

point stencil or 2-point stencil they remain in forward and backward difference scheme.

They are always first  order  accurate.  At  the same time,  central  difference scheme is

always second order accurate, whether we use 3-point stencil or 5-point stencil. This is

always second order accurate. So, this is an important thing to note how you evaluate

your derivative and then you get your schemes, ok.
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Now,  since  we  are  trying  to  find  out  the  derivatives  one  can  find  out  the  mixed

derivatives.  Like,  again  that  through  that  Taylor  series  expansion.  It  is  essentially

retaining the terms both x and y. So, your function which is essentially at certain location

is x and y, then x plus delta x and y plus delta y it would be f x y; that means, the

function at a given point, now I am going del it is a x plus delta x y. And I am going in



this direction where x delta y. So, this distance is delta y this distance is delta x ok. So, f

x plus delta x y plus delta y; that means, it would be f x y plus del x del f by del x. So,

this is the term in the first derivative term then delta x square by factorial 2 del f by del x

2. So, this is term retaining second derivative, then this retain the cross derivative then

the higher order terms or the truncation terms, truncated terms.

So, mixed derivative, you get an Taylor series expansion like this. F x y del x del f by del

x del y del f del y first derivative, del x square by factorial 2 this is second derivative this

is cross derivative. Now if you use central difference scheme to find out del 2 f by del x

del y, then that uses f i plus 1 j plus 1. So, f i plus 1 comma j plus 1 equivalent to f x plus

delta x comma y plus delta y. F i minus 1 j plus 1 is nothing but f x minus delta x y plus

delta y, f i plus 1 j minus 1 equals to f x plus delta x y plus delta y and f i minus 1 j minus

1 that is equivalent to f x minus delta x y minus delta y, ok. And divided by 4 into this,

but  as expected central  difference is  second order. Even for mixed derivative central

difference  is  second  order.  While  you  look  at  forward  difference  and  backward

difference, that will retain f i plus 1 j plus 1 minus f i j plus 1 f i plus 1 j f i j, but it is first

order accurate system. When you look at del 2 f del x del y using backward f i j f i minus

1 j f i j minus 1 f i minus 1 j minus 1 divided by this again this is first order accurate.

So, the bottom line here is that if you use forward or backward difference scheme they

are always first order accurate. So, that is true for first derivative, that is true for second

derivative, that is true for f prime, that is true for f double prime, that is true for f double

prime x y even mixed derivative. And central difference scheme is always second order

accurate. So, that is true for first derivative, second derivative, higher derivative or the

mixed derivative. So, this is what is expected.
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Now, you can always using this kind of Taylor series expansion you estimate the higher

order approximation. So, the baseline of that is Taylor series, and you define a stencil

then find out the weights, ok. And once you do that you can always get back the higher

order terms. For example, let us say someone wants to find out del u by del x, that is a

first  derivative,  this  is  first  derivative.  First  derivative  but using backward difference

scheme, ok. And the order of accuracy of this is third order. So, I am trying to find out

first derivative using backward scheme so far we have seen that first derivative is using

backwards scheme always give back the first order accurate system.

But if  you use higher order approximation,  this  is very important  to note if  you use

higher  order  approximation  then  the  weights  are  different  this  become  third  order

accurate. And if you look at the weight of this points they are different. So, this is my ith

point i plus 1 i plus 2 i minus 1 i minus 2. So, it uses all these information of i plus 1 i

minus 1 i minus 2 and get a third order system this is same thing for forward difference.

It uses i plus 2 i plus 1 I i minus 1 and it gets you back the third order accurate system.

Now, interesting to note here that number of points which are involved to find out this

derivative, so, here we are interested to find out the derivative at location i. And using

forward and backward difference scheme the points which are involved for backward

difference the point which are involved are essentially these 4 points. i plus 1 i minus 1 i



minus 2, when you go to forward difference it involved i minus 1 i plus 1 i plus 2 so, it

involves these 4 points. So, that actually requires 4 point stencil, ok.

Now, same thing if you use these things for the central difference scheme, if you use

these  for  the central  difference  scheme,  and still  you are  trying  to  find  out  the  first

derivative.  And  the  points  which  are  involved  so,  I  am trying  to  find  out  the  first

derivative at i and this is central so, I need i plus 1 I need i plus 2 I need i minus 1 and i

minus 2, and if I write down the Taylor series expression and then find out the weights

these becomes 4th order accurate, ok.

Now, at the same time using all these 5 points, if I find out the second derivative, using

central different scheme, this is also 4th order accurate. But the points which is required,

now for the central  difference scheme you need 5-point stencil  ;  that means,  2 point

ahead of the interested point of the desired point, 2 point downstream of it. So, you get

and if you look at this weights using Taylor series expansion you can easily find out

these weights or like the matrix method we have discussed, you multiplied with you find

out u i plus 1 you find out u i plus 2 you find out u i plus 1 you find out u i minus 2 i

minus 1 u i minus 2 multiplied each of this expression a b c d and find out these weights,

ok.

But  some advantage some disadvantage  of this  higher order schemes.  What  you can

immediately see even for backward and forward differences you need 4 points. So, more

grid points are required; that means, the stencil size is higher. Fill in is more considerable

overhead cost; that means, your computing overhead would be higher. So, every time

instant  the number of floating point calculation would be higher, but advantage high

resolution even it is reasonably accurate on course grid. Because, few minutes back we

have been talking about the discretization error or the truncation error and that one way

to reduce is that delta x to be small even here; if it is small, this leads to less truncation

error.

But  what  here  we  say  high  resolutions  that  higher  order  scheme  or  higher  order

approximation, that on even coarse are grid; that means, delta x is not very small, you

have reasonably accuracy on the; so, what is the primary criteria? Primary criteria is that

total computational cost to achieve a prescribed accuracy. So, you need to calculate the

computational  overhead, and make an tradeoff that whether you really  need a higher



order  scheme,  or you can afford to have a lower order scheme,  and uses better  grid

spacing and reduce those errors.
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So,  what  I  just  said  if  you  put  them  together;  that  means,  in  many  situations,  the

questions arise regarding the round off, and truncation errors involved in the numerical

computation as well as the consistency, stability and the convergence of the scheme, ok.

So, this is very, very important questions that brings to our table, that all these error how

do  they  accumulate.  And  so,  as  I  again  repeat  back  the  round  off  errors.  So,  the

computations  are  really  made in  exact  arithmetic.  This  means,  that  real  numbers are

represented in floating point from and as a result errors are caused due to the rounding

off the real numbers. In extreme cases such errors called round off errors.

And this becomes one of the main source of errors; that means, your variable definition

must  be  double  precision  so  that  it  uses  an  do  have  proper  machine  precision.  In

combination of these 2 you can always reduce the round off errors ok.
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Now, if you look at the complete picture of that so, total error would be the sum of the

round off error and the truncation error, ok. And how they vary if this is my error plot in

this direction, this is my grid spacing.

So, if grid size or the step size increases my truncation error goes up; which is obvious

because the order of scheme would be the our higher the terms which are truncated off

from the Taylor series they will lead to the more error. But round off error can come

down. And if grid size is small truncation error comes down, but so it is always between

a optimum zone where your total  error  is  minimized.  So, round off error  is  directly

proportional to the total number of arithmetic operations. And on the other side, the total

number of arithmetic operation is inversely proportional to the step size. So, these 2 kind

of lead to this picture of round off errors. So, this becomes inversely and truncation error

is directly proportional to the step size. So, you need an optimum bandwidth where your

total error would be minimal and uses that for your calculation.
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Now, another  thing  when  you  say  our  solution  has  converged,  or  solution  does  not

change or we have reached to a steady solution that means actually nothing or sometime

that means a lot. Because to get an accurate solution you always need to perform a grid

independence test; that means, I should delta x should a vary, ok. And check how so this

is the numerical error and the solution. So, this line correspond to the error, this line

correspond to the solution and this is the choice of delta x that one requires.

So, one need to have solution at multiple grids and see if the solutions are not changing

with the grid; that means, the solution becomes or rather independent of grid spacing. If

that happens; that means, the solution has becomes independent of grid spacing and you

can take that an optimal size of the grid and move forward. So, this essentially one needs

to be carried out, and how solution changes with respect to the grid size. At some point

of time when the solution become independent of grid spacing so; that means, it will not

affect the solution any other I mean anymore.

So, you can say the solution is now independent of grid spacing. Now once grid sizes are

changed discretely one does not get an exact minimum, but a range of grid size for which

that  total  error  remains  more  or  less  unchanged.  This  is  when  you  call  is  the  grid

independence test; that means, when I am varying the grid spacing and getting a solution

so, solution one to solution 2 and solution 2 to solution 3, the error percentage when that

becomes independent of grid size then we can call it as a grid independence test.



So, below the lower limit and above the upper limit of the grid independent region, total

error  increases.  So,  the  largest  value  of  the  grid  spacing  for  which  the  solution  is

essentially independent of step sizes is chosen. So, that computational time and effort

both are sort of minimized.
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Now, the example that we have taken that if you look at it that wave equation; that solve

the 1D acoustic wave equation using some. The governing equations is this where delta

is the Laplacian,  p stands for pressure,  c is the wave speed, s is source and solution

would be of this nature, p t plus delta t and x plus dx and all these.
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Now, what happens when you try to see the solution? There is a restriction on the wave

speed and dt. And actually the careful analysis shows that the restrictions comes on this

guy c dt by dx which must be less than 1. So, this has to do with the stability of the

solution. So now, so far we have been talking about the accuracy of the solution, order of

accuracy of the solution round off error truncation error now we come across a new term

the stability of the solution. And one has to make sure the solution that you obtain that is

stable enough. And that has some restriction, but this is an example we will have these

criteria more and more in details.
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Now, if you look at the solution at different time step with these, and if you plot this is

some representative  plots  there  are  some things  called  dispersion.  So,  the  numerical

approximation has some artificial dispersion. In other words, the wave speed becomes

frequency dependent. So, your solution also needs to have less dispersion error. And that

means,  one  hand  you  must  have  stable  solution  and  which  will  have  a  criteria  to

bandwidth, other case you have a less dispersive solution. So, that also for this particular

case if  you use sufficient  larger  number of grid points per wavelength then you can

actually reduce this dispersion error, ok.
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So, that is a solution one can and if you look at the velocity is this would these are some

representative things. Now coming back to the accuracy; so, accuracy of the system is

that your truncation order or the order of the truncation error, how accurate that is; so,

more useful to talk about the truncation error or the discretization error. So, the order of

accuracy of the system will  depend higher order terms;  that  is,  retained in truncated

during or truncated terms, ok.

So, essentially this has to do the order of accuracy of the system. So, if you refine the

mesh, we expect  the truncation error to decrease.  Because the order of discretization

method is order of delta x to the power n, but one has to also understand that how fast the

error decrease with the mesh refinement. But it is not a indicator of how high the error is

on the current  mesh.  So, even the methods of  very high order  may yield  inaccurate



results on a given mesh; however, we are guaranteed that the error will decrease more

rapidly with mesh refinement than with a discretization method of lower order.
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Second point is the consistency a consistence consistent. Numerical method is one which

the truncation error tends to vanish as mesh becomes finer and finer. So, the truncation

error is of the power of mesh spacing and delta t. So, sometime we may come across

schemes where the truncation error of the method is delta x by delta t. So, consistency is

not  guaranteed  unless  delta  x  is  decreased  faster  than  delta  t.  Consistency is  a  very

important property without it we have guaranty that mesh refinement will improve our

solution.

So, accuracy then consistency of the solution, then the stability, that we already come

across with that example that the path of the solution. If I want the solution from here to

there, the path of the solution whether it is stable or unstable. So, your numerical scheme

must be stable enough to get you a solution.
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Finally, convergence so, convergence has to do so, there are 2 types of convergence. One

may say that how my linear solver has converged; that means, the convergence of the

linear  solver. Others may say that  when I  keep on referring the grid so solution has

converged.

So, both the cases you can actually say the convergence of the solutions. So, when you

say convergence,  it  can be meant for both the cases. Solution of the linear solver or

solution of the your mesh refinement or the grid refinement test. So, your scheme should

have all these properties. And so, today we will stop here and carry forward in the next

lecture.

Thank you.


