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So welcome to the lecture of this Finite Volume Method.
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So, where we have stopped in that finding the derivatives; whether it is a interpolated or

first order derivative or the higher order derivative through the waiting procedure. So, if

you come back or recall to that particular things what we are trying to do, is that finding

those points around a particular point. If you have this point, and ahead of this point is f

plus, and the second point is f double plus f minus f double minus. And when you find

out those values you got this interpolated values of a, b, c, d. And what we are trying ?

Here we are trying to find out a derivative at this locations using 2 point ahead of it 2

point downstream of it.

So, it uses some sort of a symmetry. Because it uses 2 points ahead 2 points behind. So,

this symmetry because of that and when it uses this kind of points it is called the Stencil.

And this will be one term which will be using very often to define the numerical systems

or the discretization. And the points if you are distributed around that interested point

symmetrically, these are called the Centered derivative of a particular  order. And the



similarly same first derivative could be also obtained using one-point head of it and one

point downstream of it.

That means, using only a f i; f i plus 1 or f minus 1 the; or f f plus and f minus. So, this is

also another kind of Stencil where you can find out the derivative at this location. And if

you  find  out  that  this  is  called  3  points  Stencil  to  find  out  the  first  derivative  this

particular one called 5-point Stencil to finding the derivative. But the important thing is

that the points are symmetrically distributed around this point. And that is why they do

carry equal weights. Whether it is a 3 points Stencil or it is a 5-point Stencil the weights

would be similar, ok.
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So now moving ahead when you look at the derivatives; so what we have talked so for if

you put them together? So, what Taylor series done at any function for a given point, and

you try to find out the function at any given location. And using a point i, you find out

this is the point i and this is a point where it is at x. So, it is in a generic format. So, for

what we have been discussing in that case, x minus x i is equivalent to d x that is what

we have been doing.

So, any given function at this f x using point x i is represented that function, distance

between the points with first derivative evaluated at I, distance square factorial 2 second

derivative at i, distance cube third derivative and at the higher order derivative and if you

have any other. So, if you write del phi by del x at point i, it can be written phi i plus 1



minus phi i divided by x i plus 1 by x i x plus 1 minus x i by 2 del 2 phi by this. And so,

essentially taking everything else from this side to the other side, you write del phi by del

x.

Now, when you are trying to find out the higher derivatives and, if you drop the higher

terms, that will lead to the reduced order system, if you return the higher order terms it

will give you the higher order system. So, depending on that so, as we have seen if you

have done the forward one. So, you can write this is always first order accurate. That

means, the truncation error is order of first order system. So, forward difference is this

should be order of delta x backward difference is also first order accurate. So, it would be

also delta x, central this would be order of delta x square. So, the highest order term

which is written in the truncated system they will lead to the order of accuracy.
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Now, when you consider this Taylor series system, and this is what we have been talking

if you have a point Ax and x plus del x. And we have a function, you can define the

generic  Taylor  series  expression  like  that.  And  using  this  any  derivative  can  be

approximated. So, note it all this term what we are saying that it is not equal they are

approximated,  because  as  soon  as  you  drop  certain  terms  in  the  system  it  is  only

approximation. So, if I write like this x plus d x equivalent to f x plus f prime delta x plus

f double prime delta x square by 2 like that. So, this is an approximation, this is not

equal. And then you can find out the different derivative.
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Now, this we have been doing you have a point here at i, you have a point ahead of it is i

plus 1 and you have a point i minus 1. Now if you do forward differencing. So, I am

trying to find out the value at i plus 1 using a value at f x i del f x del x i at i the distance

between these 2. Now if you say, any delta x i plus 1 is x i plus 1 minus x i. Now this

could be uniform, then this lead to the uniform spacing of the points. Then they will be

equal, ok. And I can write down del f by del x at I is f i plus 1 f x i plus 1 minus f x i by I

plus 1. So, this is again my order of accuracy is first order.
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Similarly, if you write the backward system; so you remove the higher order terms, and

this is x minus i you write, that is why the difference between the points comes x minus x

minus x i minus 1 x i minus x minus 1. And if you neglect the higher order terms like,

this  term,  this term and this term,  you get this  is  the expression. Again the order of

accuracy is delta x. Similarly, if you take both the systems together, and if you write this

is f minus 1 by 2 delta x.

So, this is second order accurate. So, this we have been talking for a while that, when

you are doing forward difference or backward difference, and when you move to second

order difference. This actually gives back to a second order accurate system.
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So, if you go to centre difference  this gives back to. So, if you put them together the

spacing between the points they are uniform. So, that is why they get back to this, then

my forward difference can be written like that. Del f by del x at i i plus 1 and my points

are distributed like this i i plus 1 i minus 1 and x i plus 1 minus x i equals to x i minus x i

minus 1 equals to delta x.

So, they are uniform spacing system; backward, I write f i minus f i minus 1 by delta x

central del f x by dell x at i. Everything is evaluated at i by 2 delta x. So now, all these

are representative of the particular system.
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Now, point comes when you use forward system, when do you use backward system or

rather when do you use central system. So, it all depends of the kind of problem that you

are dealing with. And when you use these different kind of forward backward or central

difference.

So, essentially as an user or the numerical methodologies, you need to have an idea when

use what kind of system. So, the forward difference expressions are used essential when

the data to the left of a point at which a derivative is desired are not available. It is a very

important statement here. Forward difference expression are used when a data to the left

of a point at which the derivative is desired are not available. So, if I have i, I have i plus

1 and i minus 1; now I am trying to find out a derivative at i if I am trying to find out a

derivative at i, which derivative is desired not available then only I do that.

Backward difference expressions are used when the data to the right of the desired point

are not available; that means, I am trying to find out a derivative at i; that means, what I

am trying to find out is f i. And I do not have information of f i plus 1, then I have only

information before i; that means, i minus 1 or i minus 2, I used backward difference. And

when, but the other case in the forward differencing case when i minus 1 is not available,

but I plus 1 is available, I use forward difference.

 Now, central  difference  expression  contrarily  used  when  data  on  both  sides  of  the

desired points are available; that means, if I am trying to find out f i prime I need both f i



plus 1 I need i minus 1. So, these points are available or the information at these points

are available, and that time only I can use the central differensive scheme. And as we

have  mentioned,  that  the  central  differensive  scheme  would  be  always  higher  order

accurate compared to forward or backward difference system; because forward scheme

or backward scheme is first order accurate system. This is the highest order truncation

term  sitting  when  you  do  the  Taylor  series  expression,  and  get  the  approximated

derivative; whether the central scheme is second order accurate.

So, obviously, one would like to have a higher order accurate system compared to a

lower order accurate system. And this is what it is preferred in a CFD when you move

from problem to problem or rather, one to one another problem, you tried to prefer or

prefer to use as higher as possible in the order of accuracy. Now here when you talk the

order of accuracy that is only tell you from the Taylor series expression. So, essentially

from my Taylor series expression, I get the derivative or approximation of the derivative.

Once I do the approximation of derivative, these are having some order, ok. So, it could

be first order, it could be second order, it  would be higher order. Now these order of

accuracy or the term which are the higher order term which are actually truncated these

are sometimes called the truncated error. Now in the numerical system there are different

kinds of error which are associated with that.
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One important error is called the round off error. And what does it mean? The round off

error if one has to state the round off error essentially arises, because a finite number of

significant digit or the decimal places are retained and all others are rounded off by the

computer.

So now what happens; essentially solving a problem of linear system Ax equals to b.

Now when you are solving a linear system in a computer, computer get backs you some

sort of a solution of x star. Now the solutions what you are getting it also depends what

would be the digit that you retained after decimal. And that depends on 2 things. What is

the variable definition you have. That means, what kind of variable you have defined

whether it is a single precision or double precision. And then top of that what is the

precision of the machine so, the machine precision. So, it may possible that I may define

a  double  precision  variable,  but  my  hardware  or  the  computer  the  precision  of  the

computer is less.

If that happens then even then I have defined a I mean double precision variable, it will

round  of  the  values  after  decimal  after  certain  digit  of  the  decimal.  So,  in  certain

problems these, could be a problem in certain applications this may not be a that kind of

problem, but typically if the round of error is more and more this gets accumulated,

because every instant of time or physical solution I am getting a solution of x star. And

this x star is updated to get the next level of solution. In a physical problem that if you

are think about when your linear solver actually works, it works in a time domain. So, go

from one physical  time  instant  to  another  physical  time  instant,  and you update  the

solution, and then you approach towards the exact solution.

Now, while doing that in every step or every stage if you rounding of the values, whether

it depends on the variable definition or depends on the precision of the hardware, it gets

accumulated and finally, the solution that you get there you have lot of error. And that

error is called the round off error. So, to the best way to avoid that when you define the

variable  typically, you define  as  a  double precision variable.  And then as of  today’s

hardware or the architecture that we have in our hand, that is good enough to handle

those double precision variables. And you do not have this kind of errors anymore.

But keep in mind, if you do not define your variables properly most of the times you get

the round off errors in that nature. And problems of certain class we will have a huge



impact due to this round off error. But it is essentially look at that, if you are looking at a

real engineering solution then you may not have a problem with this rounding off error,

but if you are looking at the real scientific value or the physics of it, then this rounding

off errors would be of concern. And one needs to reduce or minimize as much as possible

of this. So, best way to define the variables properly; that means, you define double

precision variable,  and use proper machine precision so that your programming takes

care of the things and your rounding of error is as minimum as possible. That is one kind

of error; that there is another kind of error which is called the truncation error.

And  that  comes  from  the  numerical  approximation.  And  numerical  approximation

means, we are getting all these derivatives f prime f double prime at certain values and

you have a order of accuracy of the approximation. So, here if you look at that; if your

delta x which is the spacing of your numerical grid if that is higher; and if you are using

forward or backward difference in scheme your order of accuracy is order of delta x so,

your error is too high. At the same time if you use central scheme your order of accuracy

is delta x square so, this would be less. So, the truncation error comes from 2 different

aspect.  Or  one is  that  how you have  approximated  your  derivatives  that  means,  the

numerical approximation.

So, how well you have done that from there? And what kind of higher order terms you

have truncated off? So, if you have written the higher order term, then the leading order

derivatives  or  the leading order  errors  would be less.  If  you have retain  the I  mean

remove the higher order terms, then your order of the error should be high and now. So,

that is one way you can actually avoid rather reduce this truncation error; that means,

uses the derivatives with higher order of accurate system. That means, your numerical

approximation must get you back the higher order accurate system that is one way. Other

approximation way is that; you have refined grid system. If your delta x is really small.

If it is really small, then the delta first order term or the delta square would be much

smaller. Once, that is there then the truncation error will be also reduced; so in order to

minimize that. So, truncation error is one of the inherent properties of your numerical

scheme. It does not matter whether you are using finite volume final difference or finite

(Refer Time: 22:35). This kind of error is going to be there. So, that is also true for your

round off error, ok. So, it does not depend on what kind of numerical methods one is



using. So, best way to minimize the truncation error is that uses higher order scheme that

is one way to do that.

And second approach is that you use a smaller grid spacing. So, that means, any higher

order term that you have truncated off that would be order of delta x or square or cube,

they will not lead to too much of truncation error. So, this is something is in users, hand

and this is something one should be able to handle it very carefully, and when you look

at any CFD code weather it is commercial or in house code, or you develop your own

code.  This  is  one  term which  will  be  people  keep  on talking,  what  is  the  order  of

accuracy of your code, because, that means a lot.

 As soon as you say order of accuracy of the system you know how you have actually

evaluated your derivatives. And the way you are evaluated your derivatives, that will

have the order of accuracy, and once you have the order of accuracy you know that

truncation  order  is  of  error  is  of  that  order.  So,  as  I  keep  on  refining  my grid  my

truncation error will be less. Third is the discretization error. So, that is the error in the

overall solution that results from the truncation error assuming the round off error to be

negligible.

So; that means, if someone has handle the round off error very nicely or the round off

error  is  quite  minimal,  then  the  primarily  the  discretization  error  is  the  contribution

which comes from the truncation error. But overall the discretization error should be the

total error of; so, discretization error would be the exact solution minus the numerical

solution with no round off errors, ok. So, theoretically if there is no round off errors, if

this  guy  is  0,  then  all  the  discretization  error  should  be  equal  to  exact  solution.

Otherwise,  you will  have  the  discretization  error  and that  primarily  comes  from the

truncation error.

So, you have essentially 2 broad category of error. One is round off error another one is a

truncation error. And no matter what kind of numerical approach you use. So, you have

to essentially reduce these errors. Once you reduce these errors, you will have a accurate

numerical scheme. And that is what one desires to have, ok. So, as much as possible you

should reduce this errors, and through higher order scheme through smaller grid spacing

through higher variable proper variable definitions and all this things.
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Now, as we keep on coming back to the calculation of the derivatives. So now, if you

look at,  the Taylor  series expression actually  gets you back the different  derivatives,

whether through forward scheme or backward scheme or the central scheme. And all

these different scheme they do have certain errors. Forward scheme once you do it is

higher order term is order of delta x. So, that is the truncation error or the higher order

error, or rather we say this scheme is first order accurate. Similarly, that holds good for

the backwards scheme, because the higher order term or the truncated term are order of

delta x; and once that is there, you also term that one as a first order accurate scheme.

At the same time if you look at the central your higher order term or the higher order

term which has been truncated off there of the second order. So, this scheme is second

order accurate. So, as I have mentioning that order of accuracy primarily depends on the

highest order truncation truncated term in Taylor series approximation.

So, essentially the kind of terms that you retain, that will dictate the higher order, I mean

the order of accuracy. More and more higher  order if  you use you get  less and less

truncation error. But at the same time so, I can have higher order scheme and which

immediately means my truncation error would be less. But at the same time, one has to

note that as you move higher order your number of points required to find a derivative

will be also more. Like, if you look at central to just get a first derivative it requires 3

points. If you go to higher order accurate it will be requiring more and more points.



So, the Stencil size would also Stencil size would increase. Now if that increases, then

that has a significant impact on the data structure and the programming point of view.

And not only that, also you will have lot of impact when you go down to the application

of the boundary condition. So, when you come down to boundary, you have more points

or you have difficulties to apply that kind of thing. So, inside the domain you can always

maintain these, but when you come down to boundary you have to again come down to

the lower level of system.

So, we will stop here today.

Thank you.


