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Good morning friends. In continuation to whatever we discussed in our last lecture, if I recall 

what are we trying? We are trying to understand a second order system which is typically mass 

spring damper system and we are doing all these things because we are preparing a Brussels to 

understand the dynamics of airplane when it is disturbed about this equilibrium. They are also 

very clear, we are talking about small disturbance about its equilibrium. 

And we are trying to build our understanding of a second order system with the presumption that 

this knowledge will be useful in analysing the dynamics of an airplane under the influence of 

small disturbance. We also understand that we are more bothered about transient. And that is the 

part we need to understand if we want to characterise the dynamic stability of an airplane.  
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And if you recall, when we talk about Mass Spring Damper System, we have got equation of this 

form, X double dot + C by M X dot + K by M equal to FT but if it is a free response, it is equal 

to 0 for free response. And this is what we are looking for. We also understood when we tried to 

find its characteristic equation, we realised that depending upon the value of C, M and K, the 



combination, I could have situations where C, the damping coefficient is less than a particular 

value, say C less than C critical, then we say that this will be under damped case.  

If C is greater than C critical, we say it is over damped. And C is equal to C critical, it is the 

boundary between the over damped and under damped case but we also know one thing that if 

the damping coefficient, C is chosen such that it is equal to C critical, then the time to return to 

the equilibrium will be not only non-oscillatory, it will be fastest. We also realised that if it is 

over damped case, there will not be any oscillations. But if it is an under damped case, then there 

will be oscillations and it will take some time to come back to equilibrium. 

In understanding this, we try to define 2 things which are important, Zeta and Omega N. And 

Zeta is the damping ratio. It is actually the ratio of actual damping C divided by C critical. 

Recall, Zeta is C by C critical. So if Zeta is less than 1, that means the damping of the system is 

less than C critical. So it will have an under damped response. If Zeta is greater than 1, it will 

have an over damped response because at that time C is greater than C critical. And if C is equal 

to C critical, then there is a boundary. It will also be non-oscillatory and it will come back 

fastest, return fastest to equilibrium once the disturbance is withdrawn.  

We are all talking about disturbances, we are assuming that there is a small disturbance about 

equilibrium. And, so we realise that if this equation, which is equation of motion for a mass 

spring damper system, that is how this X coordinate is changing, how this gentleman is moving 

in X direction. So this is equation of motion. And we realise that if we can transform this 

equation of motion using Zeta and Omega N, where Omega N is the natural frequency and we 

understand natural frequency means the frequency of oscillation if damping is 0.  
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So in doing that, we came up to a point where it is D Square X by DT square + 2 Zeta Omega N 

into DX by DT + Omega N Square X equal to 0. And it goes without saying when I write X, X 

means X function of time. This is function of time: this is function of time, this is function of 

time.  
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This is same equation as the equation given by this for a free response, written into using Zeta 

and Omega N, okay. Now we will have a little bit of halt and we will try to learn the last thing 

which is required from mathematical background and then as I promised you, after this lecture 

you are ready for utilising this understanding or analysing dynamic stability of airplane. 
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If you see here, we are talking in terms of time domain because X of T, right. This is in time 

domain. We also observing that this is a differential equation, right. Now historically, one of the 

approach is, why do not we change this equation from time domain to a frequency domain.  
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And that is essentially Laplace Transform. We will just use the gist of Laplace Transform and 

whatever I am telling you, if you recall this much, it is good enough for our future analysis. 

Laplace Transform of a function is defined as, that is F of T is the function, you multiply it with 



E the power - ST where S is equal to J Mega. Omega is the frequency. And integral from 0 to 

infinity and you could see, it is an improper integral. Right? Now what is the advantage of this?  

Once I take Laplace Transform for a function, let us say the function is F of T equal to 1. Then 

what will happen? Laplace of F of T which is equal to 1 will be 0 to infinity E to the power - ST, 

F of T is 1 into DT. However, you understand, this is improper integral. So we have to follow a 

procedure. We will write integral 0 to A, limit, do not get confused with limit and all such things. 

Limit A tends to infinity, E to the power - ST into DT. And then, this will be equal to limit A 

tends to infinity and this will be E to the power - ST by S 0 to A and A tends to infinity. Right? 
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This again, once I put the limits, I say limit A tends to infinity, this will be - E to the power - AS 

by S + 1 by S. Right? I put A and 0 to be the limits. So what is happening if I do that? See, 

understand, this is very important. As long as S is positive, as long as S is greater than 0, if I take 

this limit, this gentleman will go to 0 and the result will be 1 by S. This is extremely important 

that S has to be greater than 0. Otherwise, it will not converge.  

So this is a simple trick for finding Laplace Transform. For any other function, you can put, 

replace FT by that function, do the integral. Sometimes you have to do by parts and you should 

be able to get the desired expression. In fact, Laplace Transform for all the standard functions are 

available. You need not do all those functions. You should try 1 or 2. You can refer book by 

Creswick, Engineering Mathematics by Creswick and in half an hour you can sap through and 

get the hang of it. So this is to introduce you in Laplace Transform, what is happening you see.  
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The time domain function is being transformed into a frequency domain. That is the important 

thing. If I stretch this understanding for function which are derivatives, then you can see that, I 

am just writing the result.  
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Laplace of F prime T is S of Laplace of F of T - F of 0. Similarly, Laplace of F double prime T is 

S Square Laplace of F of T - SF of 0 - F prime 0. I again strongly advise you, you can do this by 

using the definition of Laplace integral, you would then use integration by parts, you will get 

these results. Just to make you familiar, suppose I am trying to do for X dot. So as per this, 

Laplace of X dot will be equal to S Laplace of X of T - X of 0 which I write as SX of S - S of 0. 

Is this clear? 

Laplace of X of T is X of S but my notation. Similarly, if I try to find out Laplace of X double 

dot T by this, I will get S Square into Laplace of X of T - SX of 0 - X prime evaluated at 0. So 

this I can again write as S Square XS - SX of 0 - X prime 0. Since we are dealing with a linear 

system, and for linear system, you can always put these initial conditions to be 0 because this 

will not affect the stability characteristics. If it is non-linear, you can alter that. 
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If you are talking about lean year system, small perturbations, I can always approximately write 

Laplace of X double dot T equal to S Square X of S Laplace of X dot T is equal to SX of S. 

Right? Please understand, I have taken these initial conditions to be 0 because as far as stability 

is concerned for linear system, it does not matter what is the initial condition.  
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If I now apply this understanding to that equation, then what happens? Let us try to see that. Now 

let us revise, Laplace of X double dot will be S square X of S because I am putting all the initial 

conditions 0. Laplace of X dot T will be SX of S. Clear? 
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So now come here. If I take the Laplace on both sides, this is X double dot, so this will be S 

square X of S + 2 Zeta Omega N SX of S because this is X dot. + Omega N square X of S equal 

to 0. Please understand, this was the characteristic equation assuming free response because I am 

interested in the transient. This is in time domain and this is now in frequency domain. S is 

basically J Mega. So this is in frequency domain. We are all taking advantage of linear system 

and this is in time domain. 

Now what are the differences we are finding here? Please see here. The moment I take a Laplace 

transform of this equation, this resulting characteristic equation is algebraic equation. Is not it? 

This was differential equation and this is algebraic equation. This is the first advantage we got 

and that will be our prime advantage for working in the frequency domain or using the Laplace 

transform. 

So now what is the characteristic equation? The equation is X of S, if I take common, then it will 

have S Square + 2 Zeta Omega N S + Omega N square equal to 0. So my characteristic equation 

now becomes S Square + 2 Zeta Omega N S + Omega N S Square equal to 0. Right? Clear? So 

this is the characteristic equation in frequency domain. Now see how we can use it. Why we 

have come down to this sort of equation? Because our aim was to find out Zeta and Omega N of 

the system, what is the damping ratio so that I know whether the free response is oscillatory or it 



is critical damping, over damping, or under damping and also need to know what is the natural 

frequency?  

That is frequency of oscillation when damping is 0. And if I know this, I can easily find out what 

is the pseudo-damped frequency which derivation we have already made. This was our purpose. 

Now, how to use this equation that is the question. 
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Let us take mass spring damper system and which is X double dot + C by MX dot + K by M is 

equal to 0. This is in a Mass Spring Damper System. Now I want to find out what is the value of 

Zeta and what is the value of natural frequency. What I do? I take Laplace transform. So I get S 

square X of S + C by M SX of M + K by M X of S equal to 0. I have just taken Laplace 

transform here. I know, for X double dot, it is S square X of S and for X dot, it is S X of S and 

for X, it is X of S. If I take X of S common I have S Square + C by MS + K by M equal to 0. 

What is my characteristic equation? It is S Square + C by M S + K by M equal to 0. Now I want 

to find out what is the expression for Zeta and Omega N for the second order system. We are 

very comfortable now.  
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We know that for second order system, the characteristic equation can be also written in this 

form, that is S Square + 2 Zeta Omega N S + Omega N square equal to 0. If I can map this and 

this and find out what is the value of Omega N and Zeta, if I compare this, I get Omega N square 

equal to K by M and 2 Zeta Omega N equal to C by M. I am just comparing these 2 equations. S 

Square and S Square. 2 Zeta Omega N is nothing but C by M and K by M is nothing but Omega 

N square. So what does this tell you? 

 



The natural frequency is under root K by M and Zeta will be equal to C by 2M into one by under 

root K by M. See, Zeta will be equal to C by 2M and Omega N is here. That is, if I know the 

value of spring constant K for the spring, if I know what is the mass of the spring, I will be able 

to get the value of Zeta and natural frequency. Is this clear? So that is how it is very handy. 

Okay? 

We will be solving a few examples and you will realise, it is also important to know whether the 

system will be oscillatory or it will be just without any oscillation come back to equilibrium. 

Although finite details, we will see as we progress. 

 

 

 


