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Let us start this lecture with the thought process success and failure are to perpetual processes

that are encountered on the path of human life. Hence there is no need to be either elated or

perturbed by its manifestation. So if you recall that in the last lecture we discuss about the partial

derivative method and Jacobean methods and we have recapitulate the rules which govern this

partial derivative method there are basically three rules one is the reciprocal rule, chain rule, and

the, what you call cyclic rule.

So these three are to be used and then later on we also find out the relation show to connect these

Jacobeans with the deliver partial derivatives, and we have also enumerated the four rules. And



later on we looked at the thermodynamic potential we discuss about four potentials  basically

internal energy, enthalpy, Gibbs function and Elmer’s function or potential whatever you call and

we  also  derived  the  relationship  connecting  those  change  in  the  potential  thermodynamic

potential in terms of measurable properties and non valuable property right. And those things we

will be now connecting it with the measure and non measurable properties. 

(Refer Slide Time: 02:06) 

So in today's lecture, so let us consider a thermodynamic potential that is internal energy which

is more natural, because it comes from the first law of thermodynamics whereas other properties

are derived right.  And for  which we can write  down that  is  the first  Gibbs equation that  is

du=Tds-Pdv  and  u  as  we  know  is  the  basically  thermodynamic  properties  and  hence  its

differential must be exact. 

And for that what we will  do we will  use this  condition that is  ∂M/∂Y when X is equal to

constant equal to ∂N/∂X and Y constant if the form is basically you know Z-Mdx+Ndy, there is a

lot of similarities between this and also this one right is not it. And if you look at in this case in

this equation 1 the M is basically T and in equation 2 you can say N=-P right. So I can write this

condition like to a property like internal resistive property as basically ∂T/∂V when S remaining

constant is equal to - ∂P/∂S when V is remaining constant.

So if you look at basically this one what it indicates if you look at left hand side that is basically

change in the temperature with respect to specific volume whereas the right hand side change in



pressure with respect to entropy. As we know that entropy is not a measurable property right

whereas temperature, volume, pressure are measurable property that means I can relate the non

measurable properties with the measurable properties with this expression right okay.

And this expression is basically known as the maximal relation it  is a very important aspect

which is being used in thermodynamics particularly for having the thermodynamic relations. The

objective  of  thermodynamic  relation  is  to  connect  the  non  measurable  properties  with  the

measurable properties. So in the similar manner we will be using others Gibbs equations right

there are total four Gibbs equation we have seen or we have derived in the last lecture, so we will

be using that.

So let us look at the what are the thermodynamic potential we have discussed till now that is one

is internal energy right and which is a function of S and V right is not it if you look at this in

from this equation you can write down U is a function of S and V. And by using this U as a

property of the system then I can find out these expressions very easily right. And that is the

differential and this being derived from the differential relationship what we call Gibbs equation

that is equation number one.

So you know we can this is this equation is basically Maxwell equation in similar manner right I

can write  down that  change in  the Elmer’s  function  is  equal  to  – sdT-Pdv we have already

derived this.  And by using the same condition I can get ∂S/∂V when temperature remaining

constant is equal to ∂P/∂T when volume remaining constant. If you know this expression right

differential expression very easily you can get a Maxwell relationship right.

In the similar fashion we can write down that dh=Tds+vdP right and from this expression I can

write down ∂T/∂P when entropy remaining constant is equal to ∂V/∂S when pressure remaining

constant if you look at all are trying to connect entropy with respect to the rest of the, what you

call measurable properties like pressure, temperature, you know specific volume.

So in the similar fashion I can get dg = -sdT + vdp and from this I can get that is ∂s /∂P when

temperature remaining constant is equal to minus ∂V / ∂T when pressure remaining constant so

these 4 are basically the Maxwell relations right and this is in the differential form but I want to

write down in Jacobean form what it would be right it will be very simple one right.



Okay and that is basically Jacobean = Jacobean PS you can say with respect to PR or any other

thing right, so is it true right and this is a very important you know expression these Maxwell

relations because that you can connect the non measurable property to this measurable properties

and coming back to that like this Jacobean form is a very simple and very easy to remember you

know like let us consider this one right.

If I consider the first one right here what I can write down I can write down T, s V, s = - P, v -

into S, v right, so is equal to can I write down this way that is P,V into V,s can I write down is

very  easy  I  am  just  changing  this  negative  was  you  know  has  gone  out  because  I  have

interchanged these variables  here right,  so therefore I can write down very easily that is PV

Jacobean P, V = Jacobean P, S, yes or no right.

Similarly I can take another one let us say this one I am taking now right I can write down s, T

Jacobean P, T = - V, P and T, P similar way I can write down this right this as basically if I write

down I can write on V, P right equal to P, T can I have a negative sign has gone right so can I

write down this as S, T I can also write down as P, S okay T, S here into P, T - = -P, V into P, T

yes or no,  so minus, minus will cancel it out so I will get basically P, S = P, V Jacobean.

So the same thing I am getting, so all this thing you can see all for Maxwell relation right all

these for maximal relationship can be converted into one equation in case of Jacobean form so

that is very easy to remember and handle we will see.
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So and also you can think of mnemonic diagrams you know which you definitely might have

used you know like in your earlier  days to remember certain things you know like Maxwell

relation can be easily written in the diagrammatic form like you know I can think of putting this

in anti-clockwise if you look at this one here right a, g, h you this is alphabetical order and these

are all what you call potentials right and we know that a is basically function of v and d you can

write down here similarly g is a function of t and p this is basically capital P okay pressure and h

is a function of entropy and P and u is a function of s and v.

And of course you know this is a what you call as I told that this potential a this is potential right

this is basically thermodynamic potential right a, g, h is our place you know in anti-clockwise

sorry this is in a clockwise facing clockwise direction right because this is the clockwise and it is

flanked by the there what you call functions or the independent the variables right and now I can

write down the gifts equation you know very easily like vu I am going to take an example is

equal to sign into coefficient into ds and also alert we use sign and coefficient v.

So if I take that you know this u if you look at you is basically you know the independent

variables s and we so if you look at the sign and the coefficient open for s will be T if it is in this

direction you know direction of the arrow then it will be positive sign, so this I can say positive

time and what will be coefficient here for du it will be basically T the coefficient is T similarly

and sign for this in a way because it is on the opposite direction of the arrow so therefore the it

will be negative sign and coefficient will be P.

So if you look at this is ds, dv and is equal to dq so you can write down this basically du is equal

to TdS - PdV this is the gives if you can remember it is fine otherwise also this is the helpful this

diagram will be helpful to remember you keeping the sign in to in you know in this so similar

way I can have you know like, from of course once you know this relationship I can very easily

find out Maxwell relation right ∂T / ∂V = - ∂P / ∂s V is remaining constant right.

And we can from this diagram you know we can have a relationship dh is equal to TDs + VdP let

me just tell you again how because if look at h, h is having two independent variable one is s and

other is P so if you look at that for the s the coefficient will be T right and it will be positive so

therefore this Is positive T and in this case for the P the coefficient is V it is also positive.



So therefore it is dh is equal to Tds + VdP right and you can get the maximal relation very easily

and similar way you can you know have the Gibbs function and if you look at Gibbs function is

basically two independent variable one is P and T if you look at T the sign will be in this case

what it will be it will be you know negative and the coefficient will be s so therefore it is a

negative yeah right therefore it is a negative sign here and of course for the P that is the way it is

in the same direction of the arrow.

So therefore it is positive in similar way we can also look at the Elmer’s function and that is

equal to dq is equal to – sdT -  PDv and you can get a maximal relationship so if you look at this

is the way how you can remember this Maxwell relationship so that you can utilize for solving

the problems.

(Refer Slide Time: 16:15)

Very easily and we look at basically thermodynamic relations right and of course for that we

need to use some more properties apart from Pv T and those are CP CV β, β you know like it is a

coefficient  of  volume expansion K that  is  the  isothermal  compressibility  and we know that

coefficient of volume expansion is β is equal to 1 over V into ∂V by ∂T when pressure remaining

constant so I can write down that in the Jacobean form that is one over V is equal to Jacobean VP



with respect to TP right just to convert that you know parcel the derivative into the Jacobean

form.

In the similar way isothermal compressibility K which is equal to – 1  over V into  ∂V by ∂ P

when temperature remaining constant and is equal to you know 1 by V into Jacobean VT with

respect  to  PT  so  if  you  look  at  sometimes  so  you  keep  in  mind  I  use  this  isothermal

compressibility sometimes I use Kt okay you just check I mean Kt and K are same right that kind

of things you can keep in mind so β /K you can think of you know like you can just divide that

equation is this if I say this is equation one right.

And equation two you can get β/ K is equal to ∂V / ∂T pressure remaining constant into ∂P by ∂

Vt of course the with a minus sign and you can apply this cycle relationship you know and you

can find it out basically that is equal to you can simplify this expression write as ∂P by ∂T into V

using the cycle in essence right and by definition we knows CV is equal to  u by  ∂T when

volume remaining constant and that is equal to ∂u by dT and we know that du is equal to TDS -

PDV right.

So we can use that and when dv is constant that is nothing but your Tds, Tds is equal to du and I

can write down that in place of you know like CV is equal to ∂s / ∂T when volume car constant is

equal to P Jacobean is B with respect to TV right because in place of this row you can utilize this

expression right in the similar way we can also express in the CP in terms of entropy that is CP is

equal to T ∂s by ∂T when pressure remaining constant and right so you can basically can write

down CP is a function of s and T and similarly CV is a function of what you call s and T.

(Refer Slide Time: 19:47)



So if you look at like you know these are the guidelines I would like to view how you will you

know handle the thermodynamic relations  first you express the partial  derivative in terms of

Jacobean right that is the easier way and if thermodynamic potential u, h, a, g appear in the

expression replaced by the differential expression you know like for the oil gives free gives sorry

gives equation we have derived four equations and if s appears in the expression you know you

eliminate that by using Maxwell relations or CP or CV and final expressions should contain only

the measurable properties and those are P, V, T,B and then β K CP and CV.

So these are all measurable properties so therefore you should do that and I will tell you like you

can use both Jacobean and partial  derivatives or you can use the partial  derivative itself  you

know like alone and the equation will be very helpful and it will very faster also in deriving the

expressions.
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So let  us look at  some kind of you know how we can derive  the relationship  we will  first

consider the entropic change which is you know this thing so we have seen that entropy is a

function of T and V where TV are the independent variables right and we will use the partial

derivative method that is ds = ∂s/∂T when volume remaining constant into dT + ∂s/∂v temperate

for constant temperature into DV right.

And if you look at this is your first term is the M and you can say this is n then you can very

easily find out what it would be right so if you look at the recall this one the CV is basically

(∂s/∂tT)v  right into T, so therefore I  can replace this  term you know I can replace  this  term

basically  by CV/T right very easily and we need to also look at  ∂s/∂V when temperature is

remaining constant and from maximal relation we know ∂ /∂V T is nothing but your ∂P/∂T for

constant volume right.

That we can use here Maxwell relations so if we do use this one I can get that ds = v/T dT +

∂P/∂T when volume remaining constant into dV right that we can we have already replaced this

thing so if you look at all these things are basically right hand side you know changing right hand

side  are  what  you  call  measurable  properties  right  and  whereas  the  entropy  change  can  be

expressed in terms of measurable properties like C we pressure temperature volume all those

things.

So then it will be easier and we can write down Tds = CvdT + Tß / k dv we have already derived

this expression right ß/K is nothing but your dP/dTV in the you know this thing earlier we have



done that so therefore this expression is basically now in terms of all measurable properties,

okay. So by the Jacobean method we have done the partial derivative means you know without

really invoking the Jacobean method you can do that.

But in the partial derivative we'll do it just to illustrate that the equation 1 can be written as the

Jacobean SV with respect to T V X dT plus Jacobean s, T with respect to waiting into DV and we

you know this s, V and TV basically CV/T that is we already know CV = P and what you call

Jacobean is V with respect to dV, so therefore I can write down here very easily CV/ T and here

in this expression if you look at it is basically what you call sT.

We know by the Jacobean that is PV Jacobean is equal to PS right by the Jacobean as from the

maximal relationship so I can do that easily right and therefore that became PV and if you look at

I can write down here instead of sT I can write on what you call VP and then I will take you

know I can in place of these I can write down as basically or to call -PV I can write down -PV

here and VT is there.

If I change it this become if I say this is T and this V then will this become minus and minus so it

will be plus so that is nothing but your ß/ K right and then I can get the very easily dS = CV/T dT

= ß/K dv bright and we can put that expression you know Tds = Cv dT + T ß/K dv and this is the

same expression what we got earlier by the partial derivative methods right so if you look at this

is little faster way of doing you need not to remember which relationship we will be using you

know which Maxwell in lessons you will be using.

In this case when we do buy the partial derivative I will have to you know look at it and also of

course one can say because they entropy the volume a temperature then it has to be convergent to

pray expressing pressure and temperature when volume remaining constant but you will have to

remember but here it is very easy simpler way of doing the what you call Jacobean method.
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Because of fact that the module relation can only one not four as in the case of partial derivative

let us consider the relation form u = T, V right and so I can write on D = (∂ u/ ∂ T)V dT and plus

(∂ s/ ∂ v) when temperature remaining constant into DV and so that we can also express in terms

of Jacobean and if you look at this thing we already know from the what you call first gives

equation and this expression is nothing.

But you are what you call  ∂ u/ ∂ Tv STV and whereas minus P is basically ∂s/ ∂v T you know

that one so and of course for this you can find out from this first gives the equation you can

express in terms of Jacobean that is Jacobean UV = T[s, v] – P[v, v] and the Jacobean we know it

is  zero  right  by  the  Jacobean  rules.  So  therefore  the  Jacobean  [u,v]  is  nothing  but  T[s,v].

Similarly  we  can  write  down  u  with  respect  to  T  from  this  expression  that  is  Jacobean

[u,T]=T[s,t]-P[v,T]  and then we can write down basically you know equation 1 as du= you know

s,v and with respect to [T,v]dT+ in place of what you call [u,T]/[v,T].

I  can  write  down  that  from  this  expression  I  can  write  down  basically  as  [u,T]  Jacobean

[v,T]=P[s,T]/[v,T-P[v,T] so this is cancel here so it you get basically [T,s] Jacobean with respect

to [[v,T]-P]dv  so you can get very easily and this expression is basically you know [s,v] this is

nothing but your [s,v] and this we need to look at it and that is nothing but your β/K right, and

we can use the Maxwell relations here and then get that one because Maxwell relation is T,s is

equal to P,V so therefore we can you know replace this term with the maximal relationship and

then after that connect to the β/K.



So therefore we can get du=CvdT+[Tβ/K-P]dv so this is the expression you know change in

internal energy in terms of all what we call measurable properties like Cv temperature coefficient

of volume expansion isothermal compressibility and pressure right, and also the specific volume

so all these are measurable properties and we can connect you know very easily evaluate the

change in internal energy.

And for an ideal gas now we know β=1/T and the K that is isothermal compressibility is equal to

1/P so if I put it here you know β/K become basically P/T instead of this I can write down T so

this cancel it out and this term basically will be 0 right, if that is 0 then I can get basically

du=CvdT that means that what you call internal energy for an ideal gas is independent of pressure

and volume it is only dependent on the temperature right that we have already seen now we have

proved that you know by this expression.

(Refer Slide Time: 31:51)

So in the similar way we can look at the enthalpy change and will  be following the similar

procedures right and let us consider a relationship in the form the enthalpy is a function of T and

P right, and we can write down dh=∂h/∂T and  for a constant pressure into dT  ∂h and ∂P for

constant temperature into dP and we can write down in the Jacobean forms in the similar manner



and dh=Tds+vdP that we know from the second you know expression and we can write down

that you know [h,p] that is Jacobean [h,p] keeping the pressure you know like as a variable is

equal to T in Jacobean [s,P]+v[P,P] and of course [P,P] is 0.

So therefore you can get this is equal to P[s,P] and we can also write down similar way like of

course the T as a variable and Jacobean [s,T] =T[s,T]+v[P,T] and equation 1 you can write down

in this similar form like and then we can notice that CP is basically T[s,P] with respect to [T,P] so

therefore this form I can write down as CP and we can use the vertical maximal relationship for

right and we know that maximization [T,S]=[P,v].

And by that we can also find out this β as is equal to 1/v[v,P][T,P] sorry β=1/v [v,P] with respect

to [T,P] and which is nothing but in 1/v[s,T] with respect to [T,P ] right, this we are getting with

by  using  the  maximal  relationship  and  substituting  these  things  in  expression  we  can  get

dh=CpdT into[ v-βvT]dP so that with this you know we can get basically the enthalpy change

can be expressed in terms of where what you call all measurable properties right. 

(Refer Slide Time: 34:53)

And we also look at another this thing what we have already discussed that is joules thumbs and

coefficient right which is a isenthalpic process and which we have seen earlier you know like

which you use in your what you call air conditioning systems and capillary tubes and then porous

blocks  kind of things and we know that  if  we apply this  first  law of thermodynamic  forces



control you know volume systems we will find that enthalpy is remaining constant right and this

process is known as isenthalpic process right which we have already derived this thing.

(Refer Slide Time: 35:36) 

And if you look at that this you know like a µ JT what we derived that is the Joule coefficient is

nothing but ∂ T / ∂ P when enthalpy is remaining constant right and this reason is basically the µ

JT > 0 and that is known as reason appalling because of fact that when P < P I right all the time it

will be because the exit pressure will be lower than the inlet pressure otherwise there would not

be any flow right then PE will be less than ti because this will be what you call negative in the

numerator.

So whereas the TE <T I will be to make it what to call greater than zero so that there will be

cooling region and similarly when mu JT is less than zero there will be heating region we have

already discussed this thing. Now what we need to do these Joule Thomson coefficient we need

to what to Call Express in terms of properties right because it is a very important parameter

which is used for design of air can be and the vision system.
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So therefore we need to look at it and plate we can express this ∂ T / ∂ P when the enthalpy

remaining constant in the Jacobean form that is Jacobean pH with respect to pH right and I can

inter change this one and then get this expression right and we know that D H = TDS + VDP that

we know very well. So I can write down enthalpy you know with respect to Pin the Jacobean

form as shown here and which is equal to basically T into Jacobean SP and similarly we can have

Jacobean with respect to temperature you know like as a variable.

So therefore we can express this term as basically you know T into Jacobean s T + V Jacobean

PT divided by T Jacobean SP right,  so if  you look at  the earlier  is  all  measurable  property

whether but now we entropy has entered into pictures which is non-measurable so we need to

you know eliminate that so for that we know that thermal expansion coefficient β which is 1/v

Jacobean VP with respect to T P and we know also the CP = T Jacobean SP with respect to T P.

So therefore I can write down CP Jacobean TP is equal to Pinto Jacobean SP and with maximal

relationship we know that TS is equal to Jacobean TS is equal to Jacobean PV so therefore we

can utilize this one right and, so we can write down basically this as the Maxell relationship is T



into in place of HP you know I can write down basically VP from the maximal relationship it by

using these maximal relationship I can buy do not VP here +V x Jacobean PT / TP.

So if you look at this expression becomes you know like this and then I can look at this VP and

TP is nothing but your what you call coefficient of you know thermal expansion coefficient so in

place of these I can write down as beta V right and similarly PT by PT so therefore this will be

one I can say V P and then joule-Thomson coefficient will be equal to 1 / CP I can take it out

then it will be β V T - specific volume right.

So it is a if we look at all our measurable properties and you can get this you know very easily it

is not a you know differential whether it is all our measurable properties you can find out joule

Thomson coefficient very easily we know that Veda for an ideal gas one over T the joule some

concern coefficient will be equal to 0 right.
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So if you look at the we have seen the phase change processes you know from the liquid to the

gas and liquid to the it is vapor right and also solid to liquid all those things we have seen now

and we need to express you know H in terms of measurable properties during a phase change

right and for that we will have to look at the phases you know how will express this H in terms

of you know measurable properties for example heat of vaporization whenever it is vaporize we

need to express in terms of measurable properties.



So let us consider a single component system with two phases liquid and vapor in the state of

equilibrium when it is in state of equilibrium you know it will be basically in thermodynamics

that  means  mechanical  equilibrium  thermal  equilibrium  they  change  equilibrium  also  the

chemical equilibrium you know all those things will be valid and what we will do for example

we will take this you know phase diagram I am taking because solid vapor and liquid you can

describe in a single two dimensional part PT.

So if I consider this is a point here right and what is that this f1 is a state where the properties

you know of the liquid and here the properties of the gas and all will be same like at that point

and similarly a let us at station 2 like which is another point that also can be same. So you know

like that has to be maintained as a result the change phase change right to how we are changing

you know the change in the Gibbs free energy will be = 0.

So therefore we can say phase transition from liquid to the gas right will give the condition that

gives function you know like at station 1 for the liquid is =gives function for the vapor it is vapor

at the station 1. And similar way also we can write down at this you know another point like

okay so that is gf 2 = GZ 2.

So we know that for the liquid phase gf 2 - gf 1right =  sf dt + vfdp so if you look at there is a

some change in the temperature here between these two this is basically dt and if you look at this

is nothing but your dp. Right change pressure and if you look at the vapor state right or the gas

state right gaseous state that will be gg2 - gg1 is =sg dt + vt dp same thing we are writing.

Only thing you know we are putting one is the for the vapor and other is the for the liquid and

both the site should be same. So therefore if i - it this equation 1 and 2 you know I will get

basically sfdT + vfdP =- sddT +vgdp. Right and this is you know we will cancel it out because of

this condition.

That this condition you know and these two condition so this will be cancel it out so if you look

at if I can separate this you know ∂P all the coefficient for deep in one side and t dT for the other

side then I can get the ∂ P /∂T on the saturated concern because it is a saturated condition is

=change in entropy that is sD - sF = vZ - v F.

Right you know like what to call that means the slope of this curve right this slope is = change in

entropy right we are with the change in the specific volume now we are in trouble in the sense



entropy has come into pictures. Right so what we need to do we will have to use you know our

definition of the entropy change in entropy is =change in the enthalpy / 2 P. 

Right and then I can write down H FG by T so if I put this thing here in this expression I will get

∂ P /∂T is =hfg /tvfg and this equation is basically says you know like the from the slope if I

know this law I can evaluate hfg very easily right and are provided I know the change in the

specific volume right because I know this pressure and temperature right.

So that I can have conduct experiments and then find out this thing and then we can evaluate H

FG and this equation is known as the clapper on equation right this equation is known as the

chaperon equation.  Which will  relate  this  heat  of you know vaporization sublimation  x'  and

others also right into the measurable properties.

(Refer Slide Time: 46:58) 



Right so of course as I told this is applicable to any change process at a constant temperature and

pressure because you know it is a once pressure is constant temperature is constant that we have

seen. But for the solid and liquid you know or the solid is a vapor the change in enthalpy or the

vapor vaporization or heat of sublimation. It will always be positive so therefore what you call

that if it is ∂ P/∂T is positive.

Right and although we have seen that the change in you know enthalpy will be positive and of

course then this term will be positive only if the Δ V will be greater than  0 that is the expansion

right if solid is converted into liquid. Let us say okay or it is vapor ray so what will happen that

will be what you call expansion.

But  there  might  be  some cases  where  that  will  be  contraction  for  example  like  your  water

bismuth or antimony you know like these are what you call contact right negative. So therefore it

will be change in the specific volume will be negative when it is solid is converted into liquid

like your eyes being floated. You know like I have been floated in water you know liquid which

is a liquid.

So in during melting of ice you know like what he says is a negative so therefore whenever

increase in you knows pressure lowers the melting point of that we call this thing that is the

reason why you might have seen that you know this ice skaters. Right they press it so that the

there  will  be  a  melting  out  and they  can  move very  freely  and that  process  you know the

relegation right kind of thing and that is being used for the ice skaters to do that.

So liquid vapor phase transition if you look at late we look at in the solid and liquid right we can

think of liquid vapor transition in this case the if you look at specific volume of the vapor is

much larger than the specific volume of the liquid is not it. For example like if you look at liquid

and steam right if you look at for example if you can look at water and steam like what we you

know steam say specific volume is much higher than the liquid specific volume.

So therefore I can write down the change in volume during this liquid vapor phase transition is

equal to the VG right and if I assume that ideal gas which need not to but can assume that VG is

equal to RT by p. So if I look at then I can express do Pay do T is equal to basically in place of

you know what you call this expression in the chaperon equation if I put this in place of what

you call Delta V that we can only VG and in place of V Z I will put RT by P then duo P you T is



nothing but H FG P by RT square right and if I can separate this thing that is I can write out D In

P divided by DT is equal to the g RT square rights.

 Then I can integrate this equation and I will get In P is equal to H FG byr1 over T plus constant

right and then Ian get this I can plot this In P over 1over C and then I can get the slope is

basically this one right and if I plot this thing I can get the slope Ian get the also the intercept and

constant and this expression is basically known as the classiest and Clapeyron equation.

Okay  so  if  you  look  at  mean  you  can  use  this  thing  for  basically  finding  out  the  various

temperatures  and if  you know the heat  of vaporization all  these things and it  is  very useful

expression relating the what you call heat of vaporization and pressure and temperature kind of

things and when you put that thing I can get an expression like this is In P 2 by P 1 is equal to HF

G divided by R 1 over t1minus t2 right so I can take an example just to illustrate how you can do

that use this expression for finding out you know heat of vaporization and kind of things so let us

say that in order to decrease their time right.

(Refer Slide Time: 52:40)

Wait place on the steam exhaust port of a domestic pressure cooker is increased so that it can

allow the pressure to build up to the 225 kilo Pascal inside the cooker and we determine the

temperature at which theaters boils in the cooker and the latent heat of vaporization of water is

258.02o  kilo  joule  per  kg  at  1000  C  and  pressure  of  undead   k  we  need  to  calculate  this



temperature at which the water you know boils kind of things so how to go about it so if you

look at what other things are given is that p1 is given.

That is 100kPa right and p2 is also given 225 kPa and t1 is given to seven 373 Kelvin sandhog is

given to 2580 2kilo joule per kg right of course that is at 100 degree Celsius and pressure of

hundred K P right  and we'll  have to find t2  so what we candor we can basically  apply the

Clausius-Clapeyron equation righty using we can get basically In P 2 by P 1 is equal to H FG by

ah 1 over T 1 minus 1over T 2 so if you look at in this expression P 2 is given P 1 is given

temperature That is 100 is equal to F G is given.

vertical specific gas constant this is 8.314 into molecular weight has to be there that is 418 for

water 1 over3 7 3 minus 1 over T 2 so from this toucan get T 2 is equal to 120 4.6 degree Celsius

from this you know you can get but if you look at your steam table right you will get at 225 KP a

you can get temperature T 2 is equal to 124 big in Celsius which is very close to that right so

what I'm saying by this way one can know some properties and other player properties can be

found out.

Very  easily  and we can  use  this  Clapeyron  clausius  chaperon  equation  and  then  Clapeyron

equations and for very finding out the properties for during the phase change processes with this

I will stopover and we have come to the end of this thermodynamic course and I would like to

quote from this.

(Refer Slide Time: 55:56)



Osborne Reynolds in November 1883 who says in lecturing on any subject it seems to be natural

course to begin with a clear explanation of the nature purpose and scope of the subject but in

answer to the question what is thermodynamics feel tempted to reply it is very difficult subject

nearly if not quite unfit for a lectures with the third process I will stopover here thank you very

much.
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