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Let us start this lecture with the thought purpose that lack of love lures lacunas in the lake of

light whatever lacunas we find in ourselves is because of we do not have a power to love others

and also our self. So that is like let us now get into the thermodynamics in the last lecture we

discuss about basically what you call the psychometry kind of things and there we looked at the

properties how to handle the weight mixtures, and it can be useful for the air conditioning and we

have seen various applications how you can use the relationship and also psychometric charts.

Psychometric chart is very useful to do the calculation very quickly and have a visualization of

the process very easily. 
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And today we will be looking at basically the thermodynamic relations and if you look at why do

we want to look at thermodynamic relations we have looked at you know various what you call

relationship till now, but why we will be looking at this because there are several relationship we

have learnt I mean pertaining to the first law of thermodynamics, second law of thermodynamics

and if you look at gifs relationship all those things we have looked at several of them.

But now we will devote we will devoting around two lectures on this, but question arises why

remember that when we discuss about the thermodynamic properties right we looked at several

properties and then also use those properties for evaluating the various thermodynamic terms for

evaluating the work done, or the change in enthalpy, change in entropy and other things right.

And all  these properties  are  very important  for  analyzing the  problem and arriving at  some

quantitative data to appreciate what is happening.

But however most of these properties if  you look at  are not really miserable right there are

several properties which are, which cannot be measured for example and crop and all internal

energy you know like. 
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So if you look at those things we do use and if you look at we take a very simple like a single

phase pure substance that there will be several properties you may question how many properties

are used for describing or analyzing a single phase for your substance. So there are several of

them if you look at eight properties that have been can be used like let us say pressure, volume,

temperature so if you look at these are all measurable properties one can measure we can you

know use also entropy, internal energy, enthalpy and the Gibbs function and A is basically the

Helmers function right.

This if you look at the three properties are measurable and rest are non measurable properties if it

is a complex system there will be several more properties will be coming into pictures right. And

now we need to express these non measurable properties in terms of the measurable properties

then only we can relate these things and find out the properties data, and then that can be utilized.

So as I told this measurable properties is it only the pressure, volume, temperature or some other

measurable properties are there any idea?

You know if you look at specific heat right isothermal compressibility,  coefficient of volume

expansion these are all can be measured it can be considered as a measurable property, because

you can measure them right. But we are considering it is three of them here and these however

what you call something five properties I have just mentioned for a single phase pure substance

and that has to be expressed in terms of three properties which are measurable right.



So question arises what are the ways of relating the measurable properties and non measurable

property that is the basis for which will be studying the thermodynamic relations right. So if you

look at let us consider inner pressure, pressure is quantities, pressure is a function of X and Y

right let us say. And I can write on that as change in pressure is equal to ∂P/∂S when y constant

into dx +∂P/∂Y X constant into dy this you know very well you know from the calculus.

So if I divide this equation by dx right and keeping the Z constant right if I divide this by dx here

right and keeping the Z constant I will get ∂P/∂X Z because this will be one right and ∂P/∂X and

Z remain constant  is  equal  to  ∂P/∂X when Y remaining constant  + ∂P/∂Y and X remaining

constant into ∂Y/∂X when Z is remaining constant. So if you look at these are kind of things

what we will be using to have a relationship.

Now we will go back to the properties, you know like the measurable properties are basically

three for a single phase pure substance, and the non measurable properties is five total is eight if

I  look  at  the  permutation  of  this  A between  eight  and  three  that  means  number  of  partial

derivative one can do is basically 336 it is a big number that many relationship one can think of

right. And if I look at this relationship here then there are total basically out of 336 relationship if

we can express here it is a total four and if I take a permutation of that total number of possible

thermodynamic relation will be around 5.2x108 it is a big number you know it is very difficult for

a human being to remember are you getting.

This many relationship one can think of just taking eight properties start with, but if it is more

then it will be much more the are you getting my point. That is basically it is very difficult to

handle so many relationship which can come up of course some all of them you may not use it

for your analysis, but however it can. So therefore we should know how to handle those things

and we will be learning about that and we will be using two methods one is what you call partial

differentiation or partial derivative method, other is Jacobian methods.

I guess all of you know these methods only thing what we'll do we will have to recapitulate the

salient features of this and use it to deriving various thermodynamic relationship right. 
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So let us look at first the partial derivative method and if you recall there are basically three rules

are there right of partial derivative methods. So what are those can anyone tell me, because you

know this thing you have does not have courses right let me give you a clue like chain rule,

cyclic rule, right reciprocal rule all those things you know right. So let us recapitulate what it can

be let us consider relations between three variable X, Y, Z kind of things right.

And we can say that function which is like a X, Y, Z and then I can write on Z is basically

function of XY then I can write down from this the change in Z is equal to ∂Z/∂X when Y

remaining constant into dx + ∂Z/∂Y X remaining constant into dy. And similarly I can take a X is

a function of Z and Y I can write down similarly change in the X right whatever it is and do that.

And I can have any function and write down in the similar form.

Now if you look at is the reciprocal relation will be basically ∂X/∂Y Z remaining constant is

equal to ∂Y/∂X Z remaining constant this I think you know you just recapitulate and keep it

mind right I am not going to derive these things right. And the cyclic relationship if you look at it

is  basically  ∂X/∂Y Z  remaining  constant  into  ∂Y/∂Z  X  remaining  constant  into  ∂Z/∂X  Y

remaining constant is equal to - 1 right. And if I say that that Z is a function of P and Y where P

is a function of X.

Then I  can write  down cyclic  relationship  and considering that  Y remaining constant  is  not

changing right. So by that I can write down the chain rule as ∂Z/∂X Y remaining constant is

equal to ∂Z/∂P and Y remaining constant for all the case into ∂P/∂X this is basically chain rule



you  know like  kind  of  thing.  So  we  will  be  using  these  three  relationship  for  deriving  or

simplifying the various relations thermodynamic relationship.  And let us take an example how

we can use that and what is the usefulness. 
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So if  you look at  an ideal gas in a piston cylinder at  300 Kelvin and 0.9m3/kg undergoes  a

process by which its temperature and specific volume are changed by 2 Kelvin and 0.04m3/kg

respectively right. And determine the change in the pressure of these gas so how we are going to

do that so if you look at that what are the given so dT is given that is 2 Kelvin and specific

volume is a change in specific volume is given 0.04m3 per kg and of course ideal gas is given so

you can use the ideal gas law for this and in this and the volume specific volume is given as

0.9m3  per kg and the temperature is also given right 300 Kelvin so to find basically change in

pressure right.



So if you look at ideal gas law is given so therefore I can use ideal gas law PV is equal to RT

right and if you look at P is basically function of what P is function of T and V so I can write

down from this dp is equal to ∂P / ∂T into v into dT + ∂P / ∂ VT into dp right so if I I know this

relationship what it will be then this will be basically ∂P / ∂T so this will be our by V into dT yes

or no ∂P / ∂T when volume remaining constant so that will be R/V + ∂P by ∂V when temperature

is remaining constant it will be minus right.

Now and that will be basically ∂P / ∂V so therefore it will be V2 - 1 / V2 into RT dV right if I take

this a hover outside I can say this dT why V - RT R1 be there T intoV2  so I will substitute these

values that will be R, R is what is the R value we can take 0.28 seven into dT is to Kelvin right

and V is 0.9 - T is T will be 300 Kelvin right and dV is basically 0.04 into V2 is 0.9 whole square

right you will get something around 3.19 kilo Pascal right.

So if you look at I mean that way you can find out change in the pressure right kind of things so

we will now see how we can basically derive this what you call.
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Thermodynamic relationship but before that we will see the Jacobian methods right how it can

be applied in thermodynamics so the parcel vertical derivative can be easily manipulated by the

Jacobian methods so if I say that x is a function of pr and y is a function of pr then the Jacobian

of xy with respect to pr can be defined as you know like is equal to basically ∂x / ∂p and ∂x / ∂ r



and  ∂y /  ∂p  and  ∂y /  ∂r  so  it  is  a  matrix  format  in  that  is  the  and  you can  do this  cross

multiplication for example that will be ∂x / ∂p x ∂y / ∂r this term right minus ∂y / ∂p into ∂x / ∂r.

So if you look at that you can express in this form the Jacobian switch is quite you know looks to

be little complex but however it will be very useful like when we handle that and Jacobian’s

obeys the following property the way we have looked at you know the properties for partial

derivatives similar way we can also have properties for the Jacobian obeys so that is one is

Jacobian xy the respect to pr into the Jacobian pr with respect to st is nothing but Jacobian  xy

with respect to st and ∂x by ∂y when z is remaining constant can be written as the Jacobian xz

respect to yz.

Right and so you can get from here very easily from this for example like if I say this is a you

know like xz like kind of thing so I can write down from here what it would be xz if I say this is

xz  x yz  right so that will be ∂x by ∂ y into ∂z / ∂z - if you look at this is ∂z / ∂y into ∂x / ∂ z so if

you look at this is basically 0 right so and this is one so you will get basically x Jacobian xz with

respect to yz is nothing but your ∂x by ∂y when z is remaining constant so you can very easily

get this one you know this is the term which will be remaining.

So very easily you can get similarly if you look at Jacobian xy with respect to any arbitrary will

be equal to the Jacobian yx that means just opposite you know like kind of thing fancy another

property you can do also you can say the Jacobian xy with respect to pr is equal to - Jacobian yx

with respect to pr that is the meaning and the another interesting the Jacobian xy with respect to

pr can is equal to 0 I mean you can put this here in this expression and do that yourself right.

For example if you want to this thing I can show you that this Jacobian xx Jacobian xx with

respect to pr will be equal to ∂x / ∂p into ∂ x / ∂ x - ∂ x / ∂ p into ∂x / ∂x so if you look at this is 1

this is 1 so therefore this is equal to 0 right you can get very easily these are the things you can

verify by using that relationship so if I say that you know z is a function of xy and z is the

thermodynamic property and it can be you know it can be a property thermodynamic only when

it is exact that we have you know learned in the very beginning and from.

Then I can write down dZ is equal to ∂z / ∂x when y the remaining constant into dx + ∂a / ∂y x

remaining constant into dy so I can write on this thing in terms of Jacobian obeys like this is a

differential form right and this is a Jacobian form I can write down those eight by ∂x / using this



second relationship like by using this relationship I can write down very easily here right ∂z it  /

∂x is nothing but Jacobian zy with respect to xy and similarly ∂z / ∂y when x remaining constant.

We can write down the Jacobian zx with respect to yx is a very easy to convert that you know

partial derivative to the Jacobian obeys and equation 1 this you can write down as a dZ is equal to

Mdx + Ndy because we want to you know consider see that whether it is a property or not and

for that it should be exact so therefore what we will have to do we will have to basically put

these conditions you know like kind of things that is basically to M / ∂y when x is constant equal

to ∂n / ∂z when x is constant that we have seen so keep in mind that M is basically Jacobian zy

respect to xy and whereas N is Jacobian zx with respect to yx.
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So and if we will divide this equation by da right so I can write down that ∂z / ∂a when be you

know is constant we are keeping the be constant is equal to ∂a / ∂x and y remaining constant into

∂x / ∂a when we remaining constant + ∂a / ∂y when x is remaining constant into ∂y / ∂a when be

remaining constant so this you can write down in the Jacobian form right which are very easily

which we have seen that by using the Jacobian rule you can write down the Jacobian form so in

that what you can do you can write down in a very simple expression how because what you will

do you can multiplied here.

What you call let us say I will multiply it by here that xy Jacobian right and if I multiply by this

then if you look at all our remaining constant but now what we will do we will have to see that



xy heavy and here also if I want to then I can say this as a minus I can say this is x this is dead

and here it is minus and similarly I can also put it here minus and write down in place of this y in

place of z, so I can take all these things to the from the right hand side to the left hand side I can

write down very easily this expression right.

Because this is same as that you know it will go to left hand side it became positive so you can

write down which is a very simple expression kind of things in a Jacobean form. So if you look

at this can be written as that you know this equation 2 can be written as the informs of M I have

introduced where M is the Jacobian z,y with respect to xy and N is Jacobian  z,x with respect to

yx then we can write down this basically the Jacobian z,b=M Jacobian x,b+N[y,b] right.

And if you look at we know this gives equation that is du=Tds-Pdv right, if you observe this

equation basically it is the change in internal is it dependent on the entropy and also the specific

volume I can write on u is a function of s and v right, so if you look at if I want this to be a

property  right  we  can  do  that  but  similarly  we  have  seen  also  the  give  second  equation

dh=Tds+vdP this  we  have  already  derived  earlier  right  and  applying  this  you  know above

property of the Jacobian to gives relationship we can write down as u [u,x ]=T [s,x]-PX – P[v,x]

right.

We can take x is the arbitrary we are taking variables and similar way we can write down also for

enthalpy right. 
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So if you look at by this we can we will be using basically how to handle the Jacobian how you

will  convert  the  partial  derivative  into  Jacobians  and now we will  be  looking  at  you know

thermodynamic potentials, so question arises what do mean by potential? Potential always you

know basically to ability to do work you know is basically tell you that what is the potential to

work and what are the properties we can think of that as an ability to do the work any idea.

So if you recall that first law of thermodynamics we looked at it right, what it is doing if you

look at even the objective of the classical thermodynamics is to convert the microscopic form of

energy into microscopic form. So when you talk about this macroscopic form of energy we use

basically internal energy right, and internal energy is having ability to do work and that is the

first law of thermodynamics derived from there right, okay.

Rather the internal energy is defined in the first law of thermodynamics right is a property of the

system so if you as a matter of fact the most natural you know like thermodynamic potential is

the internal energy which is the rest of the things are derived from that and the thermodynamic

properties are internal energy enthalpy, Helmholtz potential and gives potential of course there is

a grand potential which will not be discussing about it right.

But will be discussing about these four potentials only that is that will be basically tell us the

ability  to do the work.  So these potentials  of the system which cannot  be measured directly

because these are the properties i have already told earlier that you cannot measure directly you

can measure pressure, volume, temperature or specific heat you know isothermal compressibility



and others but you cannot measure and whereas for simple compressible substance you know

like we need these kind of things potentials to be utilized. 

And we are having three properties pressure volume temperature that can be measured directly

that  means  we  need  to  express  this  thing  in  terms  of  what  we  call  the  properties  that  is

measurable. And as I told that for a pure substance in a single phase a thermodynamic potential

has to be expressed you know in terms of two other properties we have already seen that right.
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So as I told the internal energy is basically a one of the thermodynamic potential  and let us

consider a system undergoes a change during an adiabatic process you can think of our simple

piston cylinder arrangement you know like kind of things let us say it is having some gas right

and this is our system so it is you know at a very high pressure let us say P 1T1 and ambient

pressure is P0 kind of thing and P1 is greater than P0 so then when it will release this piston then

piston will move right there will be expansion so there is some work being done right.

And of course if we are saying adiabatic then what will happen to the change in internal energy

right will be basically the work done right, so we can apply the first law of thermodynamics that

is equal to du-dw because as is adiabatic process be dq=0 so therefore that clearly says you know

that the internal energy is a thermodynamic potential because the change in internal energy is

reflected in the change in work so work is done due to the change in internal energy and vice

versa. So therefore that thermodynamic u is known as the thermodynamic potential.



And from the first law of course we know that du=dq-dw and from second law we know that

dq/T=ds so therefore I can write down as dq=Tds and if I can use this here you know Tds here I

will get a relationship right that is du=Tds-Pdv right, and this is we are saying Pdv work what

can be other thing but we are saying this is Pdv work right dw is basically Pdv right, so this is the

Gibbs first equation what we have earlier derived and this week and arrived again I am like and

that clearly says indicates that the internal energy is basically a thermodynamic potential.
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And let us look at enthalpy like let us consider a turbine right which is a flow work one can think

of and we can apply the first law of thermodynamic for control volume of a turbine right, and we

can apply basically the first law of thermodynamic for a control volume system of course this is

the whole equation and we can assume it is a steady flow process so therefore this will be 0 and

change in kinetic energy you know is 0 and change in potential energy also 0 we are considering

for the simplicity and from the mass conservation I can write down mi=me=  for a steady flowm

process.

So therefore the equation you know can be written as shaft work is equal to minus he-hi and keep

in mind that we are considering this as a adiabatic process also right this is a 0 adiabatic process.

So therefore we are considering change in you know enthalpy is nothing but your shaft work

right, that indicates that enthalpy is basically thermodynamic potential and of course we know



that h=u+Pv and therefore we can differentiate it that isdh=du+Pdv+vdP  and already we know

the Gibbs first equation that is equal to du=Tds-Pdv.

So therefore I can write down this as Tds-Pdv+Pdv+vdP and this cancel it out so that comes to be

basically dh=Tds+vdP and this is your Gibbs second equation which we will be using this you

know gives first equation, second equation and very you know very much and we will be looking

at that. 
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And let us look at Helmholtz free energy of course what we will be doing generally people use

Helmholtz potential as it must be energy but we will be discussing about that and what are the

differences for that let us consider system interacting with the surrounding right, and we can

apply the first law of thermodynamics to find out was done by a system during a given process

right.



And that  is  equal  to  dw=dq-du  right,  and  let  the  surrounding  we  maintained  at  a  constant

temperature T0 right ambient temperature and which is not affected by you no interaction with

that. So because it is a very thermal reservoir you can say and if you we can apply the second

law of thermodynamics that is changing you know entropy this is for the system right.

If you look at this is corresponding to the system right plus the change in entropy corresponding

to the surrounding that is plus b s0 is will be greater than equal to 0 right and what will be the

change in vertical entropy because let us say there is a you know system like for example we can

take this piston and cylinder arrangement kind of thing same thing whatever you have seen just

now right there is my system and this is gas at p1 and p 1 and the surrounding is T0 right and it

will be expanded I am like you know it can go when it will be release piston can move up and it

can be expanded.

So then what will happen like there will be some heat can enter into here you know from the

surrounding if you allow, so that is nothing but DQ so if you look at the heat is entering into the

system right and that means it is coming from the surrounding to the system so therefore the sign

will be negative in this case. So de s not change in entropy for the surrounding will be minus d q

divided by T0 T0 is the ambient temperature or the surrounding temperature then if I put this

thing here you know in this equation that is d s – B3 / T0 ≥ to 0 right.

And therefore we can write on this as basically DQ ≤ T0 d s and what we will do we will use this

thing in the equation this  equation  one I  can say and this  is  equation 2 right  I  can use this

expressions ion for DQ from equation 2 to the equation 1 and when you do that I will get the

work done you know as basically less than equal to t TS - d right this we will know and that I can

write down as because you know like work done will be less than U 1 – U2 let us say from state 1

to state 2 - T0 s 1 - s to write one can think of writing one to basically right.

And then I can say that if it is t 1 = t2 is T0  we can write on that very easily as the work done

between the what you call state 1 to 2 is basically U1 - t 1 s 1 - U2 - t 2 s 2 and this term is

nothing but your A1  that is Elmer’s function this is known as L must function right this term was

basically function or potential you can write right and similarly this portion also right that is a

two and these change in Elmer’s potential or the function is known as the l must free energy. So



if you look at the total this portion is known as free energy of course in there some book people

who use interchangeably right.

But whenever we talk about free energy is a change in the Elmer’s potential right so and the

Elmer’s potential as I told you-PS that is the Elmer’s potential at all so therefore I can write

down this as da is equal to d u - TDS - SDT I am just differentiate this you know and I can do

that and but whereas the D u = TDS - PDV. So if I can write down here TDS - TDS right -PDV -

SD t so this will cancel out right this will cancel it out.

So therefore I will be getting the DA = -s DT - PDV right so this is again the similar to what we

have derived for the internal energy and enthalpy and this is of course the gives sorry this is of

course the Elmer’s free energy and in the similar manner we are going to also derived the what

you call the Gibb’s free energy that is a change in Gibbs function or the potential.
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So let us consider a system which is operating under steady state flow and three control volume

you can talk think of about a turbine kind of things you know like you can think of it turbine

right which is you know flow is coming Chloe’s going out of course this is having a shaft you

know kind of things the turbine. So we can apply the first law of thermodynamics for a steady

flow process.



So therefore this will be equal to 0 and change in kinetic energy will be 0 and change in potential

energy 0 kind of things and of course we know this mass flow rate you know like a steady flow

process therefore m. I = m. e = m. and you can divide this equation by this mass flow rate and

you will get an expression as what you call w shaft is equal to Q - H E - H I, so this is from the

first law of thermodynamics and this work done is per unit mass also the change in enthalpy too

so also the heat interaction per unit mass all are per unit mass.

So if the you know control volume receives heat energy from the surrounding T naught then we

can write down change in entropy is equal to -q / t0 right that we have already seen for the

control auto cal mass system and we know from the second law of demand change in entropy of

further system plus the change in entropy for the surrounding its surrounding greater than equal

to 0.

So we can write down then δ s -Q by T0 ≥ 0 so therefore Q < T0 x δ s in this case basically AC - s

I write this we have already derived similar you know expression for so when you combine this

equation one and equation two then we can you know right on the shaft work is basically less

than T0 into change in entropy between the exit and inlet minus the change in enthalpy between

the exit and the inlet right.

So therefore you know we can also make this thing that TI = PE = T0 we can say that the shaft

work will be less than H I - P I SI - of course there is another the same thing like change in you

know like a enthalpy and then te x SC and this we call it as a Gibbs function or the potential right

and that is G is basically h - TS keep in mind that this Gibbs function is being very much used for

the chemical systems kind of things and this change in the gifts or to call gives function this

portion we can call it as it basically Gibbs free energy right.

And G is a Gibbs potential that is the only difference and because it says that you know the

potential having to do the work and we can derive you know we can differentiate this gives a

function and DG = D H - TDS - SDT and we know this give second equation DH = tds + VDP

and we can write down that as equal to TD s + VDP - TDS - SDT so this will be cancelled it out

so I can get expression as DG is equal to VDP minus SDT.

So if you look at this for expression like this we have derived you know one is for internal

energy change other  is  for the enthalpy change and we have also derived for  the hell  mass



function and or the potential and Gibbs function rate and all are if you look at you know some of

them are function of you know entropy and specific volume and some of them also function of

pressure and temperature like the Gibbs free energy change.

So I can write down here also G is a function of basically P and T, so we will be using this

expression for relating this what you call major rural properties with the un measurable or non

measurable properties like that we will be doing in the next class and for that we will be deriving

some  relationship  right  and  we  will  be  using  that,  so  thank  you  very  much  for  your  kind

attention.
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