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Good morning. So in the last class we have started discussing the shape nozzles, we have 

discuss that why the shape of the nozzle is important, we have… 
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And so far we have been discussing just the throat area and the exit area, which we have 

derived from the area relationship. In the last class, we have discussed that why the entire 

shape of the nozzle is important. So, now today what we are going to do is we will 

discuss how do we estimate the shape. If we look at this converging diverging nozzle 

there are two parts to it, one is a converging part up to the throat and then a diverging 

part up to the exit. 

So, when we talk about the full shape of the nozzle, we have to discuss both the 

converging part as well as the diverging part. However, if we look at the converging part 

itself, the flow velocity in this side is subsonic mark number is less than 1, so this is a 

subsonic flow in a converging passage. So, therefore this side, the converging side is not 

of much importance, it is just a subsonic flow in the converging passage and since the 

passage is converging there is no possibility of flow separation or anything. 



So, we can choose design with a simple geometric convergence that will be good enough 

for us, because of the fact that here we have favorable pressure radiant; the pressure 

radiant is decreasing in the flow direction. So, therefore reasonably smooth come to 

provides pity good subsonic flow, there is no question of separation nozzles are also not 

very high.  

So, therefore this side is not of much importance, shape of the diverging portion is 

however, important this side the diverging portion although here also, the flow is 

accelerating. So, is a favorable pressure radiant, but how much acceleration will be there 

or do we will there will be a shock wave or not or if there is huge special loss or not all 

of them depend on the shape, because the area ratio at every location is important. 

So, at every location we have to have a given area ration, which will give us the flow, on 

the other hand if we look at the contour here, it is diverging and the flow is supersonic 

here. So, when it goes around a curve the flow will accelerate further, but there will be a 

expansion fan coming here, so we would like to have this expansion fan because 

expansion fan is isentropic.  

So, then we have to design essentially considering a series of expansion fans which are 

giving us the proper concur, but the strength of this expansion fan or whether we are 

going to have an expansion fan or not and whether it is going to have a isentropic or not 

depends on the design, how much curvature we are providing. So, we cannot choose 

ivory curvature it has to be specific curvature, therefore the design of this portion is more 

important than the design of this portion.  

So, in the next couple of lectures actually we will be focusing on, the diverging portion 

of the nozzle. Let us now, start with various shape nozzle the simplest one is a conical 

nozzle, so first let us look at a conical nozzle. A conical nozzle is a converging diverging 

nozzle, but with a very simple geometry, so let me consider a rocket this is the 

combustion chamber, small converging portion, then a smooth transition through the 

throat and then a diverging portion like this is the typical conical nozzle. 

So, in a conical nozzle let me first draw the diagram then I will explain this, let me first 

draw the complete diagram this is our control surface, let us say that, let us change it 

back this point o this is the axis, this half angle is alpha. So, now let us look at this nozzle 



this is by rocket combustion chamber, this is the converging section of the nozzle, the 

diverging section we are considering is a conical section with at half angle alpha here. 

Now, we also assume that the flow essentially stream consist of streamlines all of them 

emitting from this point o, this are the flow direction. So, there are multiple streamlines 

all emitting from this point o, so here all our streamlines, so streamlines as straight lines, 

so streamlines or straight lines and all of them intersect at the point o which is the origin 

here. Let us, consider that this is our control surface as I have shown here and the control 

surface passes through this spherical segment here. 

So, the flow is coming out like this and the pressure here is my exit pressure p e 

everywhere else the ambient pressure p a is acting, let us say the velocity of the flow 

coming out is u v. Let us, also consider that the radius of this section maximum radius is 

r, rather let me take it as capital R, so the maximum radius at the exit is capital R. So, 

this is the geometry of the conical nozzle that we are going to talk about and we consider 

that the flow is coming out like a spherical segment as shown here. 

Let me just highlight this spherical segment so which the flow is coming out, this is my 

spherical segment through which the flow is coming out and we assume that the 

properties are constant exhaust properties are constant at the spherical segment which is 

the exit segment, so whatever our exit properties the exit velocity and pressure. So, all 

along this exit segment this properties are constant, then now we want to analyze this 

flow and estimate the thrust produced by this nozzle with the conical section. 
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So, let us first look at this is our thrust let us say is F reaction force, so the thrust 

essentially will be in the axial direction, so we will look at the x momentum equation. 

So, from x momentum equation from second the momentum equation the sum of all the 

forces acting in the x direction is equal to what are the forces that are acting the reaction 

force F and the pressure force pressure force will be equal to p a minus p e, times A e at 

the exit area because everywhere else it is closed. 

So, the only pressure is acting on this surface this is equal to the rate of change of 

momentum, so how do we get the rate of change of momentum here, the integral over 

the control surface rho u x, u dot n, d a, that is the x momentum, u x is the x component 

of velocity, u dot n is a normal component normal to the area, d a is the in front means 

small area, rho is the density. So, this is the momentum flux or of the control volume, so 

this is our x momentum equation then. 

Now, from this equation we will try to get the expression for this reaction force F that is 

our thrust, this is what we want to estimate. So, first of all let us look at the area A e, this 

area is the plane exhaust area what is the plane exhaust area this area is the plane exhaust 

area. So, this area is our A e, so the plane exhaust area A e, then will be given as equal to 

pi R square that is the area, because R is our radius at the exit section. 

Now, let us consider a small elemental area here, so this is the small elemental area the 

angle here let us say is b alpha, then rather let we take it as d phi because alpha I am 



using here and this angle is phi. So, from the axis to the initial segment here is phi, then 

the small included axis angle is d phi, we want to estimate this area, because this is the 

area normal to which the flow is going out. So, that is our d A, so we want to estimate d 

A for that this is the geometry that we are considering then d A is going to be equal to 2 

pi R sin phi d phi, this is R sin pi.  

So, what we are looking at remember this is the conical area, so if I look from this side it 

is a circular side I am trying to find out a small area concentric area like this is the area I 

am trying to find out. So, this area will be given as this is the area I am talking about, so 

this radius is R sin phi, So, the perimeter is 2 pi R, sin phi times, this depth what is this 

depth is R d phi. So, this will be equal R d phi, so this the one more R here.  

So, this perimeter is 2 pi R sin phi and this depth is R d phi, therefore the total area is 

this, so this is equal to 2 pi r square sin phi d phi, that is the small elemental area that we 

are considering through which the flow is going out. Next, let us look at this term u dot n 

u dot n in this case, according to our description here this is the segment through which it 

is coming out and the streamlines are all normal to this surface coming with exit velocity 

u e, so therefore u dot n here is my u e exit velocity. 

If this is the exit velocity, if I look at the x component of exit velocity, this is the 

component we are looking at, so this is u x, therefore u x is the x component of exit 

velocity which is u e cos phi at every phi location I have this. So at the axis phi is 0, so u 

v is equal to u e at every other location phi is changing, so u x is also varying, so 

therefore, these are the properties the physical properties at the exit section. 

So, now let us put all of this back into this expression for thrust, we are interested in 

getting an expression for this thrust F. So, my thrust will be equal to now since we have 

already transferred the d A to in terms of d phi, the integration over this area essentially 

is integration over this angle. Now, how is phi changing phi is changing from 0 here to 

alpha here, that is the half angle for this conical section.  

So, therefore, this term will be equal to integral 0 to alpha rho u x is equal to u e cos phi, 

u dot n is equal to u e, d a is equal to 2 pi R square sin phi d phi. So, that is this term and 

this will now be taken to the right hand side, this becomes equal to p e minus p a times a 

e where A e once again is this area the projected area here. So, this is our thrust 

expression, so now if we can integrate this we have an expression for the thrust. 
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So, let us see that how we integrate this. So, it is pity straight forward integration after 

integration we get this is equal to 2 pi R square rho u e square 1 minus cos square alpha 

by 2 plus p e minus p a times A e. So, this term comes after integrating this is a pity 

straight forward integration, now this is the expression for the thrust. Let us, have a 

closer look if I look at this area here we have defined everything in terms of this area. 

This is the segmental area, let us say A e dash is the total area of spherical segment, then 

this is equal to you can do the math yourself it is pity easy 2 pi R square 1 minus cos 

alpha this area. So, now if I express this in terms of if I look at the mass flow rate m dot 

m dot is going to be normal to this segmental area because the flow is normal to this area 

right say m dot will be defined normal for the flow normal to this area. So, m dot is 

going to be equal to rho u e, A e star A e dash.  

So, therefore, this is equal to rho u e 2 pi R square 1 minus cos alpha, now I see that sum 

of this terms here are included in this expression. So, let us take a closer look at this 

expression then, so the thrust equation can be written as F let us see here 2 pi R square, I 

have 2 pi R square rho I have rho u e. I have u e 1 minus cos alpha and this is 1 minus 

cos square alpha, 1 minus cos square alpha can be written as 1 minus cos alpha, 1 plus 

cos alpha, so this term is also included here. 
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So, therefore m dot is present here it becomes equal to m dot u e 1 plus cos alpha by 2 

plus p e minus p a times A e if I look at this A e dash this is also nothing but equal to 2 1 

plus cos alpha times A e, now therefore, this term here can be written in terms of A e 

dash. Now, this thrust equation I will rewrite as therefore, F is equal to m dot u e 1 plus 

cos alpha by 2 plus p e minus p a times, 1 plus cos alpha by 2 times A e dash.  

So, essentially this exit area projected area we have written in terms of the segment area, 

now here I can take this common this becomes equal to m dot u e plus p e minus p a 

times A e dash. So, look at the form so far all over the equations were actually this, now 

only thing is added is 1 plus cos alpha by 2, and where is this coming from where is this 

1 plus cos alpha by 2 coming from. I will come to that, let me just little bit focus little 

more or less. 

Typically, we have seen that the area ratios are very large, A e by A star can be 30, 40, 

60, 100, so this area ratios are very large. So, if I look at this large area ratios even bigger 

than this, then this area and this area are almost equal. So therefore, typically a dash is 

almost equal to A e, so we can replace this a dash now by A e here, so in that case, this is 

equal to 1 plus, so almost equal to let me write it as cos alpha by 2 m dot u e plus p e 

minus p a times A e. 

Because, typically for the practical rocket this area ratio is large, so A e dash is almost 

equal to A e, so we can write it like this. Now, let us look this equation, this the our 



original thrust equation which we had derived this portion here, this is our original thrust 

equation, which we had derived assuming the flow to be one dimensional.  

Now, it is no longer a one dimensional flow, so what we are seeing is that, the one the 

thrust equation is modified from A one dimensional flow common as so essentially for 

an ideal rocket, with half angle alpha, alpha is our half angle for a ideal conical rocket 

with half angle alpha, the thrust is reduced by a factor lambda. The thrust is reduced by a 

factor, this factor is lambda equal to 1 plus cos alpha by 2, why are we saying that the 

thrust is reduced? Because, cos alpha is bounded between 0 and 1, and I am minus 1 and 

1.  

So, if cos alpha is 1, in that case lambda is equal to 1, otherwise cos alpha is less than 1, 

so lambda is less than 1, so the thrust is reduced. So, straight away what we are seeing is 

that, considering the 3D flow, not that 2D that we have been discuss 1D flow that we 

have been discussing, considering a 3D flow there is a reduction in thrust. In the limiting 

case, when alpha is equal to 90 degree no alpha is 0, when alpha is 0, then this will be 

equal to 1, but alpha is 0 means it is straight flow.  

So, that is something that we will come to that ideally we would like to have a straight 

flow going out that is why we have to give a shape we will come to that. So, for here we 

are considering a conical nozzle, so therefore, the flow is at an angle and because of that 

angle variation, this is the reduction in thrust the factor that we reduce the thrust. So, 

primarily this change or reduction is because the flow is no longer one dimensional, but 

as we can see that this analysis is quite easy, very straight forward analysis.  

This relationship that we have derived here, compares very well with experimental data, 

experimentally it can be proved or observed that in this the reduction in thrust follows 

this relationship. So, therefore, we can assume that this relationship is quite valid over 

the wide range of operating conditions. So, establishing that this is a valid relationship, 

let us now look at the physical consequences of this relationship. So, let us consider the 

conical rocket that we are discussing with certain half angle alpha. 
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First of all, if you want to increase the thrust for everything else just want to change the 

shape and increase the thrust, how we can do? it is by increasing lambda, so if we 

increase lambda the thrust is going to increase. Now the question is, how do we increase 

lambda? Lambda will be essentially depending on alpha, in order to increase lambda, 

what is the minimum value of lambda here? it is going to be half, when cos alpha is 0 it 

is going to be 1 when cos alpha is 1, when cos alpha is 1 for 0 degree. 

So, when we are reducing alpha lambda is going to increase, so therefore, by reducing 

alpha we can increase the thrust. So, for a conical nozzle you can increase the thrust by 

reducing the half angle alpha. So therefore, we would like to have small cone angles, but 

now comes the tricky part, we would like to have a small cone angle at the same time, in 

order to get proper expansion. Our area ratio is fixed, so this exit area to this throat area 

is a star A e, this is something that is fixed.  

Now for this fixed, if I reduce this area let me look at this if I reduce this half angle, how 

do we get this exit area ration? Because that we need to get only way to get it is by 

extending the length. So, earlier we were getting this area ratio within this length, if we 

reduce the half angle we have to increase the length. So, smaller cone angles means 

increased nozzle length, so the nozzle length now needs to be increased, to a great 

degree. 



In order to increase the thrust, and that is something that we do not want to do because 

this is going to add weight, just to give an idea for a conical nozzle, let us say for a 

conical nozzle with angle alpha and length L diameter D, D is the diameter at the exit. If, 

I estimate this area ratio A e by A star, it will be a function of the throat diameter D star 

plus 2L tan alpha by D star square, this is the area ratio expression.  

So, area ratio is a function of D star, which is the throat diameter here D star length of 

the nozzle L and tan alpha which tan of the half angle. So, the area ratio is a function of 

this, now if I look at this equation in this equation my D star is fixed if you decrease 

alpha and we want maintain same A e by A star L next to be increased and it needs to be 

increase substantially, in order to maintain the same area ratio. So, therefore I can get an 

expression for L also L by manipulating this equation, we can get this is equal to this is 

the expression for the L. 

So, once again we are seeing that as alpha decreases, L has to be increased, in order to 

maintain this two constant D star and A e by A star, let us look at an example, if we want 

to maintain A e by A star equal to 100, typical values for rockets, we want to maintain it 

at 100. Let us say that L by D star is 7.8 for alpha equal to 30 degree, so if you take the 

half angle to be 30 degree. The length throat diameter ratio is 7.8, maintaining the same 

area ratio, if we reduce the value of alpha to 15 degree, when alpha is equal to 15 degree, 

then the corresponding L by D star is going to be 16.8. 

So, once again as I am saying the D star is same we do not want to change D star that is 

the throat condition we do not want to change that, because this D star is the throat 

diameter remember our discussion in the previous class. The chamber pressure is 

maintained by this; so that we cannot change otherwise the chamber pressure is going to 

change. So, we have this chamber pressure p c naught maintained by this D star, which 

will dictate then chamber pressure the combustion conditions as well as the specific 

impulse, we do not want to change that.  

So this remains same, now in order to maintain the same area ratio if we reduce the half 

angle by half, the length has increased by more than double. Because, earlier the length 

was 7.8 times D star, now it is 16.8 times D star, so it is more than double. So, what we 

are seeing is that the nozzle length and now another point I would like to mention here is 



that, if we do not make this change what happens, if you maintain the same area ratio and 

reduce this, what will happen.  

The expansion is not going to be complete, we get an 100 expanded nozzle, because this 

condition A e by A star is for our ideal expansion this an ideal expansion, and we are not 

truncating it here, so we get an 100 expanded nozzle. So, the mark number is going to be 

less, exit mark number is going to be less than the design exit mark number. So, our exit 

velocity is going to be less will be producing less thrust, so therefore, if we do not 

change this length and reduce the half angle. 

The thrust produce is going to be less, because our exit mark number has reduced. So, 

what we are seeing here, now is that the exit mark number which is dictated by the 

length of the nozzle and as well as the included half angle. So, half angle plays a very 

important role in the exit mark number, reducing the exit a half angle by 15 degree more 

than doubles the nozzle length, and typically the weight of the nozzle is proportional to 

its length. 

So, if we are increasing the length by more than double, its rate is going to increase the 

weight will be more than double, so therefore, when in all counts increasing this length 

like this is going to increase because if the length is doubled, the weight is doubled, the 

structural coefficient is going to change.  

And when, we are losing once again either on the performance or on the payload 

carrying capability, so both of them is something we do not want to do. So, therefore 

what we have shown here is that a conical nozzle although is very simple to get the 

expressions, but because of the 3 D effect there is a loss in our performance given by this 

factor. 

This loss can be minimized by reducing the included half angle, but as we reduce the half 

angle our length is increasing. So, therefore, this is not very advantageous, so we have to 

look at some other alternatives that although a chemical a conical nozzle is easy to 

design easy to fabricate, but the losses because of the float turning we may you may say 

is probably not acceptable in most of the practical cases. So, we have to then look at 

some other alternative to address this issue. 



So, one of the ways then will be instead of giving a fixed angle, what if we vary this 

nozzle angle over the length, we give it a shape that the acceleration is here if I look is a 

fixed divergence. So, acceleration is almost constant everywhere, instead of that what if 

we give a variation smooth variation in such a way that we can get our flow to turn the 

way we want to first advantage, second we have shown here that if we make alpha equal 

to 0 degree then lambda is 1. 

So, alpha equal to 0 degree essentially means that if we make the flow parallel to its axis, 

then lambda is 1, may not be able to do it for the entire nozzle, but even if we do it for a 

section towards the exit then we have improve the performance a lot. And in that case 

since, we are not changing lambda we are not changing we do not need to change alpha 

it is straight section now. So, therefore, this advantage we can get without having to 

reduce this alpha. 
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So, we can maintain a shorter length and get the advantage of the increase, the thrust by 

eliminating this loss or this drop, because of the three d effect by giving a proper shape 

to the nozzle. So, that is what now we are going to discuss a shape nozzle. So, the next 

topic is the shape nozzle, so as we can see here that the conical nozzle gave us the 

direction the analysis of the conical nozzle gave us the direction towards which we need 

to proceed to optimize the performance of the nozzle. 



So, next thing we are going to discuss is a shape nozzle, in the shape nozzle the ultimate 

goal is to make alpha as low as possible towards the exit. Ideally you would like to have 

a uniform parallel flow at the exit, so the primary m is that the shape is such that the flow 

is uniform and parallel at the exit. This is the ultimate goal, that we turn the flow 

gradually we do not turn in it in one go we turn the flow gradually in such a way that 

towards the exit of the nozzle the flow is uniform and parallel. 

This, if can be done properly it will completely eliminate the loss due to divergence what 

is the loss due to divergence in the conical nozzle we have seen that there is a loss in 

thrust and that loss was because of the 3 D effect which is because of the divergence. So, 

that loss is called divergence loss if we can provide a uniform parallel flow at the exit it 

will completely eliminate that loss lambda we can get lambda equal to 1. 

So, that is the m it will completely eliminate loss due to divergence, now the thing is that 

how do we get this that is the important factor parameter that how do we get this 

variation the method used is called method of characteristics, method of characteristic is 

typically used in designing contour for a supersonic flow. When, the supersonic flow 

goes through a curvature it turns and then we use method of characteristic because that 

assumes the flow to be isentropic and maintains isentropic nature of the flow at the same 

time it will accelerate the flow.  

So, that is the method now we will we can use for the nozzle design for nozzle design, so 

what is the assumptions involved in method of characteristics, first of all it is isentropic 

expansion of a perfect gas with constant gamma. So, method of characteristic actually 

assume the flow to the isentropic and expanding flow this are the two things that has 

required for using method of characteristics. So, here we have an expanding flow in the 

nozzle. 

So, we essentially maintain isentropic expansion, we assume the fluid to be perfect gas 

with a constant value of gamma and we can use method of characteristics to get the 

proper acceleration and it can also be used for variable gamma and chemical reaction can 

also be incorporated, even the wall friction can be incorporated that we will come to 

later.  

At present we will consider that the value of gamma is constant, we will not consider any 

chemical reaction, we will not consider any wall friction, we will use the classic method 



of characteristics to get the contour, that is what we want to do we want to get a basic 

contour, that will give us this. Then, after that that basic contour can be modified by 

bringing in more complexities that is something not very difficult to do. 

One advantage of using method of characteristic, from the previous analysis is it is no 

longer 1D, it is essentially a 2 D analysis, we will be doing a 2 D analysis to get the 

characteristics. So, that is what the advantage that we are already considering the flow to 

be 2 D and we are designing best on that. So, therefore this divergence losses as 

somehow taken care of during the design itself, because we are considering the flow 

which is almost real nature. 

Therefore, it is already considered in the design portion and one of the thing that method 

of characteristics does since we are considering a 2 D flow, it can provide significant 

curvatures to the streamlines, since the streamlines will be curved not the straight 

streamlines as we have seen in the case of the conical nozzle here the streamlines will be 

curved. 

Now, if we are considering curved streamlines then we know that the steam lines curve 

there is a normal component of the pressure. So, therefore, the component of pressure 

perpendicular to the streamlines are important, that needs to be considered when we are 

using this method of characteristics. So, the perpendicular component of steam line 

because the streamlines are curved quite significantly that needs to be considered in our 

analysis.  

So, this is what we are going to discuss in the next class now that how do we get this 

shape, how do we use method of characteristics because we have shown that the conical 

nozzle although is easy to make, easy to analyze the losses are quite can be quite 

significant because of the 3 D effect. So, I would like to eliminate those losses by giving 

a proper shape to the nozzle.  

So, that is what we are going to discuss in the next class, essentially we will discuss 

method of characteristics for nozzle design this is what we are going to discuss in the 

next class that how do we use method of characteristics for the nozzle design. So, I will 

stop here now, in the next class we will continue from here. 

Thank you. 


