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So, welcome to this class 1 the rocket and space craft propulsion. In the last lecture, we 

started discussing the performance of ideal rocket nozzle. We have listed the 

assumptions that we use for ideal rocket nozzle. Look at the validity of those 

assumptions. Then we defined a parameter called thrust coefficient and we got an 

expression for the thrust coefficient. After that what we did was we derived an 

expression for the mass flow rate. 
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Remember that a rocket nozzle always is a converging diverging nozzle as I have 

mentioned. So, this is the rocket nozzle. We are considering is the throat area a star, the 

exit area is a e, the combustion chamber pressure and temperatures are P c naught and T 

c naught. The expression for the mass flow rate, the general expression for the mass flow 

rate for compassable flows had the term P naught and T naught. That is the stagnation 

pressure and stagnation temperature. 

Now, the least of assumption if you take a closer look in the least of assumption for ideal 

rocket, we have assumed that the process is isentropic all through and if it is isentropic, 

then it is adiabatic and for adiabatic, process are adiabatic flow stagnation temperature is 



constant. This is something that is a very important thing, because even a shock wave is 

a adiabatic process. Therefore, across a shock wave also stagnation temperature remains 

constant. Therefore, for any isentropic processes are adiabatic process, the stagnation 

temperature is constant. Therefore, the stagnation temperature anywhere in the rocket is 

equal to the stagnation temperature in the combustion chamber. So, therefore, T naught 

is equal to T c naught. Secondly, we are assuming the float to be isentropic and there is 

no walk done in here anywhere, right. It is flowing on its own. 

So, therefore, since the process is isentropic, the stagnation pressure will remain 

constant. If it was non-isentropic or if there was a work done, the stagnation pressure will 

change. That is why if you have a shock wave, the stagnation pressure is going to 

change. Stagnation will drop if you have a shock wave. So, therefore, in the least of 

assumption, we said that we do not want a shock flow. Rather the presence of shock 

wave there that was to ensure that the stagnation pressure remains constant. So, if the 

stagnation pressure is constant everywhere, then P naught is equal to P c naught. 

Therefore, best on this we had derived the critical mass flow rate which is the throat 

mass flow rate is equal to a star P c naught by square root of gamma divided by square 

root of r T c naught 2 upon gamma plus 1 to the power gamma plus 1 upon 2 upon 

gamma minus 1, and this was continuing from the previous lecture. Let me call this 

equation 4. Only difference between equation 3 and 4 is putting this as star. We are 

considering this as a critical mass flow rate. 

Now, let us continue our discussion on the ideal rocket. So, for ideal rocket, the 

stagnation enthalpy how is that going to vary? If you look back at our derivation of quasi 

1d flow, the energy equation we have shown that for a quasi 1d flow, the stagnation 

enthalpy is constant. So, for this case, since with all the assumption, this is a quasi 1d 

flow. The stagnation enthalpy is constant which essentially means that the stagnation 

enthalpy at the chamber which is h c naught is equal to the static enthalpy at the exit plus 

the kinetic energy half u e square. So, this is coming from state from the derivation that 

we have shown that stagnation enthalpy is constant for a quasi 1d flow. We have this 

condition now, where h c naught is stagnation enthalpy in the combustion chamber, h e is 

the static enthalpy at exit and u e is the exit velocity. 
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Now, from this equation we can write u e square by 2 is equal to h c naught minus h e 

and since, we are considering the working fluid to be a perfect gas which is homogenizes 

and everything. So, therefore, C P is constant, right and c c thermally perfect gas h is 

equal to C P t. So, therefore, we can write it as C P T c naught minus C P T e plus C P is 

the specific gas constant at constant pressure. Now, this equation will give us an 

expression for u e by square root of T c naught is equal to 2 C P 1 minus T e upon T c 

naught. This equation now can be rephrased in terms of the pressure ratio. Here, it is in 

terms of the temperature ratio T by T c naught. If you look back at our discussions on the 

effect of back pressure and the isentropic flows, T e is something that we do not know. 

We cannot possibly measure also with very much accuracy, but exit pressure we know 

that is why we talked about the effect of exit pressure, not effect of exit temperature. 

So, what we would like to do is this we will represent in terms of the pressure when the 

pressure is something that we can very easily measure. So, next what we do is, since the 

process is isentropic, we can use the isentropic relationships. So, from isentropic 

relationship what we can get is that T naught by T is equal to P naught by P to the power 

gamma minus 1 by gamma. This is also equal to row naught by row to the power 1 upon 

gamma minus 1. This is the isentropic relationship which you must have seen in 

aerodynamic courses are any fluid mechanic course we should have seen the isentropic 

relationship. These relationships are very important. Therefore, for most practical gasses, 

these are either given in isentropic tables. So, therefore, this is something that is 



applicable. Now, notice is one thing that since we made this assumption that the flow is 

isentropic, we have every simple relationship getting pressure, temperature, density 

etcetera. Without this we cannot do this. Without assuming the isentropic, we cannot 

have this simplifier relationship. So, therefore, this is again very important assumption 

because this isentropic process from thermodynamics, we know that the process has to 

be defined in order to get the state properties and these are the state properties pressure 

temperature etcetera.  

So, the change in state properties depend on the process and here, with the assumptions 

that we have made, you have considered the process to be isentropic. Therefore, we have 

a simple relationship relating the state properties have this given here. So, now, we take 

this equation and put it back in to this. We get our expression for u e by T c naught 

square root of T c naught is equal to square root of 2 gamma r upon gamma minus 1 

minus P e by P c naught to the power gamma minus 1 by gamma. Let me call this 

equation 5.  

Now, notice what we have done. We had a term here T e by T c naught. This we 

replaced by P e by P c naught to the power gamma minus 1 by gamma which is 

appearing here. Then, we had a term C P here and by definition C P is equal to r gamma 

upon gamma minus 1, we can prove this also gamma is equal to C P by c v, right because 

gamma is ratio specific rates. Therefore, C P is equal to gamma c v and r is equal to C P 

minus c v. So, what I can do here is I can write this as gamma c v minus c v. So, this is 

equal to gamma minus 1 c v. Therefore, c v is equal to r upon gamma minus 1 and C P 

equal to gamma c v is equal to gamma r upon gamma minus 1, right. So, this is can be 

very easily proved. 

So, therefore, we have C P is equal to gamma r upon gamma minus 1 which we have put 

here. So, this is now our expression for the exit velocity. This is what we have been 

trying to get. We have been talking about the velocity increment from flight mechanics. 

What we needed was this exit velocity. Now, we have got an expression for exit velocity. 

As we can see that exit velocity is function. Of course, the fluid property is gamma and r, 

it is function of exit pressure, function of stagnation, temperature in the combustion 

chamber and the stagnation temperature and pressure at the combustion chamber. So, 

now this is the equation that will give us the exit velocity which we needed to estimate 

the thrust. 



So, that is why we followed this process because finally, this is what is going into the 

thrust. In the last class, we have defined thrust in terms of thrust coefficient. So, now, let 

us go back to the definition of thrust coefficient and then, in the thrust coefficient, 

remember that the first term had the exit velocity term appearing. So, there I will replace 

that with this equation if I go back to the definition of the thrust coefficient. 
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So, for the ideal rocket, the thrust coefficient then will be given as 2 gamma square upon 

gamma minus 1, 2 upon gamma plus 1 to the power gamma plus 1 upon gamma minus 1, 

1 minus P e by P c naught to the power gamma minus 1 by gamma to the power half plus 

a e by a star P e by P c naught minus P a by P c naught. Let me call this equation 6.  

Now, let us see how did you get this? Let us see how did we get this equation? This 

equation comes from the equation which we have derived. In the last class, we said that c 

F is equal to M dot u e square root of T c naught divided by a star P c naught by square 

root of T c naught plus the pressure term, which is this, this is the equation we had 

derived for last class for the thrust coefficient.  

Now, let us look at this equation. We have a term here u e by T c naught, right. We have 

derived an expression for u e by T c naught here. So, this is what we have put in. So, this 

term appearing here is coming from their and we have one term M dot square root of T c 

naught by a star P c naught. Look at this here. From this equation I have deleted some 

part of it. I have deleted some part of it from this equation. We get M dot square root of 



T c naught by a star P c naught appearing here will be a function of gamma and r, right. 

So, I put this back into this equation. 

I put this into this equation. then little bit of algebra will give me this equation. So, this is 

the expression for the thrust coefficient for an ideal rocket. Now, let us see what does it 

convey? According to this equation here, we have eliminated T c naught completely. So, 

temperature is not present there. So, always whenever we talk about combustion, always 

people think about temperature has the most important parameter, right, but here you see 

temperature has no significance. It has been eliminated completely. What is important 

here is the pressure, right.  

So, therefore, for the rockets, temperature is not important. What is important is the 

pressure, right. So, therefore, now looking at this equation, the dependence on 

temperature is there. So, this parameter gamma temperature is going to dictate gamma, 

otherwise temperature has no significance. Here, it is essentially a function of pressure to 

this thing by the way for most of the aero engines. That is why when we talk about 

combustion for aero application, pressure is the more important parameter. Then, 

temperature, you do not even report temperature in most of the practical cases 

essentially.  

What is temperature? It is the important parameter. So, now, let us look at this. So, our 

thrust coefficient is the function of this pressure ratio and this pressure ratio is function 

of our nozzle geometric, right that we have shown. So, therefore, this dependence on 

nozzle geometry and here, also dependence on nozzle geometric and of course, the initial 

pressure and gamma is a very simple expression. Again, let us point out that it has two 

terms. First term is this and the second term is pressure term. So, thrust coefficient has 

two terms. First is the momentum term; other is the pressure term. Now, let me just look 

at this equation and write it in some functional form. So, what I will do is like to have a 

little closer look at this equation. 
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So, let us look at first the area ratio. Area ratio is given here. We have shown that the 

area ratio is a function of the mach number and gamma, right, exit mach number and 

gamma. We also know that if you are considering the flow to be isentropic, then P 

naught by P e is equal to 1 plus gamma minus 1 by M e square to the power gamma upon 

gamma minus 1. This is for isentropic flow.  

So, therefore, looking at this, what we can see here is that the mach number is a function 

of P naught and P e P naught by P e, this pressure ratio and gamma. Therefore, putting 

this back into this equation, we can say that the area ratio is also function of P by P 

naught and gamma. So, a e by a star is a function of P e by P c naught and gamma. Here 

in this case why P e is exit pressure? P c naught is the stagnation pressure as we have 

discussed earlier. So, therefore, this gives me the area ratio. Now, area ratio in terms of 

this can be written as again this. You can do yourself homework. I am not going to the 

details of this. I have already derived the expression for the area ratio in terms of mach 

number, right. In that equation you will replace mach number by this and then, simplify 

to get this P c naught by P e gamma minus 1 minus 1 to the power half. Let me call this 

equation 7. 

So, let me see what we have done here. The area ratio is a function of mach number and 

gamma and mach number is a function of pressure ratio. So, in this area, mach number 

relationship which we had derived earlier, if I replace the mach number by this pressure 



ratio, then after little bit of simplification we get this relationship. Here, area ratio is 

represented in terms of pressure ratio and gamma. So, now, what is the advantage of this 

equation? If I take this equation and put it back into my expression for thrust coefficient 

equation 6, this area ratio is now replaced by this. So, what we have now is the thrust 

coefficient as a function of only the pressure ratio and gamma, nothing else. Everything 

else has been eliminated.  

So, using this now we have, if I put it back into this equation, we get the thrust 

coefficient as a function of pressure ratio and gamma. Let us now take a look at this term 

here is my area ratio and the combination of this and this will give me my pressure ratio. 

What I will do now is look at little more on this. Remember at the beginning of this 

course when I derived the thrust equation, I had shown from analysis looking at various 

things that we have discussed that the thrust is going to be maximum if you have ideal 

expansion. Now, let us mathematically prove it for that. What I am going to do is I have 

this area ratio expression here and I had the thrust equation which I have just deleted. 
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Let me just plot the variation of thrust coefficient c F verses this area ratio. Now, notice 

one thing that whether we are going to have an ideal expansion or under expansion or 

over expansion depends on what the exit pressure, and the exit pressure depends on the 

exit mach number which depends on exit area. Therefore, this is the parameter that is 

going to dictate whether we have an ideal expansion, under expansion or over expansion. 



So, now, what we do is let us say that we vary this parameter area ratio and plot our 

thrust coefficient. If I do that, I will get something like this. This plot is for a given value 

of P c naught P a by P c naught. That is back pressure for a given value of back pressure 

P a. Here is our back pressure if I plot the variation.  

Now, what is happening if you choose a particular value of a by a star gamma is fixed, 

then P e becomes a parameter which can be estimated from here, right. Once we 

estimated this P e, we can put into the expression for specific thrust coefficient and we 

can get the value of thrust coefficient, but for that we need to specify this. So, this value 

is specified left side and now, we get this plot. Let us look at plot. Now, what we notice 

here is that there is a maximum point here. There is a point corresponds to a given area 

ratio here for which the thrust is maximum and it so happens that this plot, this point 

corresponds to P e equal to P a. You can show that you can maximize that equation with 

respect to P e, right. That is another way. If my every equation maximize it with respect 

to P e, you will see that for P equal to P a c F is maximum. So, this point here, the thrust 

coefficient is maximum and this is of course our ideal expansion, right. 

So, once again we are proving that for the ideal expansion, the thrust is maximum now if 

the area is less than this ideal expansion. Now, we have shown that. So, this is my ideal 

expansion area, right. If the exit area is less than this, then the expansion is not complete. 

It has to be more expanded to get to the ideal expansion, right. So, the expansion is 

under, right. If this area ratio is less than the critical area ratio, we have under expansion. 

So, therefore, this side is my under expansion and if my area is more than this, then the 

expansion is more than that is required because this is my ideal expansion. Expansion is 

more. So, this is my over expansion. So, in the under expansion here, since we have 

cutting the nozzle before it is used, the ideal condition, the pressure is higher at the exit 

of the nozzle. The pressure is higher than the ideal expansion pressure. 

So, therefore, it has to go through an expansion and to further expand it. When we are 

taking it further away, then the pressure is lower than the ideal expansion. So, it has to be 

compressed which has to be done through as an expression way where abolish shock 

wave to bring it to the ideal case, other bring it to the atmospheric equation. So, this is 

the plot of various cases we had discussed already, right. So, this is something this plot 

once again (( )) the fact that for the ideal expansion, the thrust produced is going to be 



maximum now and also, from this plot we have discussed that for the under expansion 

which is here we need to have an expansion (( )). 

So, because of the fact, this is P e, this is P a ideal for under expansion P e greater than P 

a. So, we need to have expansion fans to further expand the flow, so that finally it returns 

this P a. So, that is for the ideal expansion also. We have discussed that for over 

expansion, the pressure here is less than the atmospheric pressure. So, therefore, we need 

to have a shock wave or comparison wave to increase this pressure. So, this is going to 

be a shock wave. So, increase this pressure, so that finally the pressure becomes equal to 

the atmospheric pressure. So, this is for over expanded nozzle. Now, one point I like to 

mention here is all these things, all the discussions here are for a given value of P c 

naught stagnation chamber pressure. Now, does the thrust coefficient depend on the 

stagnation chamber pressure? If I look at expression for the stagnation, the thrust 

coefficient you can see that the stagnation chamber, the thrust coefficient can be 

increased by increasing the chamber pressure. 
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So, it can be shown that as P c naught increases, the thrust coefficient will increase and 

we would like to get higher thrust coefficient, right because that will give us higher exit 

velocity. So, the higher thrust which will essentially mean that we can carry more pay 

load or go to a longer distance. So, this is something we want to increase, but as we can 

see, here is the thrust coefficient increases with increasing in the stagnation chamber 



pressure, then the question is can we say that whatever we do, it will be more than it will 

be increasing. We keep on increasing the chamber pressure and the thrust is going to 

increase always. Then, we can get infinite thrust. Technically, is it possible? No. Because 

even though as we increase P c naught, the exit velocity increases, c F increases, but with 

the same at the same time there is a change in our pressure ratio and that attends a limit. 

So, let me look at this. If I look at this ratio P e by P c naught, right since we are talking 

about ideal expansion, let say this is equal to P a by P c naught. What will be the limiting 

ratio? It can be very small, but it cannot be negative, right. Pressure cannot be negative, 

absolute pressure because talking about an absolute pressure always. So, pressure cannot 

be negative. So, in the limiting case, it can be 0. 

So, if my exit pressure which is equal to (( )) pressure is very small. With respect to the 

chamber pressure, it can attend A 0 velocity A 0 value. It cannot go less than that. Then, 

this ratio 0 can go back to our equation for the thrust coefficient c F for P c naught equal 

to 0. Now, this pressure ratio is 0 in that. Then, this will be a function of only gamma, 

right. If you look at that equation, you will get this to the power half. So, this is the 

maximum thrust coefficient. You can get when this ratio is 0. You cannot get more than 

this. So, this thrust coefficient is called ultimate thrust coefficient.  

The limiting case where, sorry not P c naught is 0. P e by P c naught is 0. In the limiting 

case when the pressure ratio is 0, we get the maximum possible thrust. Coefficient is this 

and that depends on gamma. So, that depends on the kind of propellant we are using. So, 

therefore, this discussion shows that there is a maximum value of thrust. We cannot get 

more than that. It is limited, right. So, with this, we complete our discussion on the thrust 

coefficient. There is another important parameter for the rocket proportion which is 

called characteristic velocity. 
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So, next let us define the characteristic velocity and then, we will see that the 

performance actually is a function of these two parameters thrust, the coefficient and 

characteristic velocity. So, the next thing we discuss is characteristic velocity c star is 

discussed by c star characteristic. Velocity c star is defined as P c naught upon a star by 

M dot. Now, the thrust coefficient if you look at essentially depends on the nozzle design 

as a parameter of nozzle design whereas, the characteristic velocity is a parameter 

representing the combustion characteristics because this P c naught and M dot depend on 

the combustion. So, therefore, the combination of these two is the complete rocket, the 

combustion chamber as well as the nozzle. So, thrust coefficient gives us the nozzle 

performance, characteristic velocity gives me the combustion chamber performance. 

So, now, looking at this if I look at c F c star upon c F, the product of these two we will 

see that this is equal to F by M dot which is my equivalent velocity by definition, right. 

So, therefore, the product of characteristic velocity and the thrust coefficient gives us the 

equivalent velocity. So, this is, remember that this is the parameter which we have been 

looking for. Now, we have shown that from the flight mechanic exits the most important 

parameter. Now, we are looking for this parameter c F. We have already discussed c star. 

Characteristic velocity is coming from here. The product of these two gives us the 

equivalent velocity. 



So, this parameter and if you are looking for the thrust, focal thrust, then it is M dot c F c 

star from here. So, thrust produces M dot c F c star. We can write this then as is equal to 

M dot equivalent which is equal to M dot g e I s P. Let me call this equation 8. So, then 

notice one thing what we are doing now. So, for in the flight mechanics, we talked about 

I s P, right. We said is the given parameter. Now, for the first time we have got an 

equation relating this and this which will give me I s P I s P is equal to the specific 

impulse is given. Now, from this equation c F c star by g e which was a given parameter 

for in the flight mechanics analysis, now we can estimate this. We have seen that c F is a 

function of P by P naught and gamma in this equation a star again is M dot by a, star is a 

function of P naught, right. P e by P naught again this will be a function of P e by P 

naught and gamma temperature will also coming here. 

So, c star will depend on temperature also. So, once we have the pressure and 

temperature of the combustion chamber, we can put it here. We can get the value of I s P 

and one more thing that we have been saying again and again at the beginning. We said 

that I s P value for a given fuel is constant that should have been talking at the time why 

should it be constant. It is equivalent velocity, right. It is a velocity you should be able to 

increase the velocity as much as we want to by putting in more pressure, but that time I 

have said that I s P constant for a given fuel ratio are a given propellant combination. 

You did not ask any question. We have proved it here that has a thrust coefficient gets an 

ultimate value. We cannot possibly increase beyond that, right and that is the I s P. We 

are talking about remember the rockets will be operating in vacuum ideally, right. So, 

this condition is valid. So, therefore, the thrust coefficient has a maximum value and the 

maximum value will be coming through this. So, that is why I s P for a specific chemical 

rocket are any rocket is constant. It does not depend on anything else, right though if I 

have prove this here. 
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So, now let us go back to the c star characteristic velocity. First, look at c star. We can 

write c star as square root of T c naught P c naught a star upon M dot square root of T c 

naught. Now, M dot is the mass fluorite. We have shown that mass fluorite is going to be 

constant everywhere because the throat is choked. So, we can replace this M dot by M 

dot star which is the choking mass fluorite. After we do that, then this is replacing M dot 

by M dot star we get c star is equal to square root of T c naught r upon gamma plus 1 by 

2 to the power gamma plus 1 upon gamma minus 1 to the power half. So, this is the 

value of c star as we can see that c star is dependent on T c naught. So, thrust coefficient 

was dependent on P c naught, where as the characteristic velocity is dependent on T c 

naught. 

So, therefore, the temperature effect comes into picture through this for the characteristic 

velocity thrust. Coefficient is not affected much by the temperature, but the characteristic 

velocity is. Of course, we will not be going to details of that. This is also responsible for 

the instabilities, combustion instabilities particulate. The bulk model instability is 

dictated by this characteristic velocity. Characteristic velocity here we are saying is 

dependent on T c naught which will depend on the fuel layer ratio that we are, sorry fuel 

oxidizer ratio. We are considering, we can rewrite little differently by changing r to 

universal gas constant. 



So, we can write this as is equal to T c naught by M bar. Let me call this equation 9. So, 

here this r had is a universal gas constant and this M is the molecular weight. So, this r 

here we can change r equal to r by M bar ms. What we can see now is that if you reduce 

the molecular weight, what happens to characteristic velocity. It goes up as my 

characteristic velocity goes up, I s P goes up, my thrust goes up. So, if you can use a 

lighter fuel, we get more characteristic velocity. So, we get more thrust. So, if you go to 

hydrogen as a fuel, we produce more thrust. 

So, therefore, the cryogenics fuel like hydrogen will give us more thrust. The c star here, 

I would like to point out it essentially the measure of how much energy essentially 

dictated by this T c naught, right. T c naught is the combustion chamber temperature. 

Now, how is this temperature created? When there is a chemical reaction, heat of 

reaction is released and then, this heat is absorbed by the products to give the final 

temperature. We will come back to this when we talk about temperature. At present we 

see that T c naught is essentially the temperature of the products. So, it will depend on 

two parameters. One is how much energy is contained in that fuel, right and secondly, 

how efficiently is converted.  

Now, that conversion is essentially means what kind of composition we are getting. High 

efficient is the combustion process. If it is completely converted, we get the maximum 

temperature where if it is not completely converted, the temperature will be less. So, 

therefore, this c star depends on the composition of fuel. It’s heating value and the 

combustion efficiency, so that you would like to get this as high as possible, so that our c 

star higher and that will be attended by choosing a proper propellant. That is why for a 

given, first of all there is a specific flow that we use for rockets, that is we do not use 

alcohol. Why not? Because alcohols have pretty low heating value, although they are 

fuels, they have pretty low heating values.  

So, we will not get enough T naught to produce enough thrust to carry that weight. So, 

you do not use it. So, there are specific fuels which are used and there is a reason for it 

that will give us the higher c star. So, c star is a fuel property and the combustion 

characteristics. So, therefore, the design of combustion chamber, this becomes important. 

Another point like to again reiterate is the fact that c star is inversely proportional to M 

bar is a molecular weight, so light that the propellant higher characteristic velocity we 

will get. 



So, we will have higher specific impulse. That is why hydrogen is a good propellant for 

rocket application c star. Finally, the practical use of this is to get the size of the 

combustion chamber. How large will be the combustion chamber? The combustion 

chamber design is dictated by this and also, it characterizes mixing effectiveness. How 

effective is the mixing of propellants? So, essentially the combustion chamber design 

parameter will be coming from this. So, that is why we discussed it. 

Now, from here we will design the combustion chamber and then, once the chamber is 

made, then we look at the temperature pressure etcetera. So, essentially bottom line for 

the machine requirement is, we want to maximize c star. For that we have to maximize 

this. So, either we maximize temperature or minimize molecular weight. For a given 

fuel, molecular weight is fixed. So, we get much temperature as possible. That is the 

idea. So, therefore, I will stop here.  

Now what we have discussed is that c star, the characteristic velocity tells us how to 

design the combustion chamber. So, in the next class, what we will do is we will take up 

a small combustion chamber design problem that shows how we size the combustion 

chamber, simple thrust chamber sizing that will give us the parameters that we will 

require and how do we get the length and diameter etcetera. After we have done with 

that, we will continue our discussion on nozzles because as we have seen that the nozzle 

thrust coefficient is one of the very important parameter.  

Once we have with the nozzles, then we will come back to the combustion. Here at 

present we have the temperature is a given quantity. Later on we come back to the 

combustion. We will discuss the combustion process. We will say that for a given fuel 

and oxidizer combination, how do we get this temperature and what will be the final 

product given the reacted. That is what we will discuss later. So, I stop here today with 

the discussion with the characteristic velocity in next lecture and talk about the simple 

design of thrust chamber and then, continue on the discussion on the nozzles.  

Thank you. 


