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Welcome back in the last few lectures we have been discussing the quasi one d flow 

through variable area in ducts, we have derived the area velocity relationship in the last 

class, which is d A by A equal to M square minus 1 d u by u. After that in the last class 

we have shown that there are 4 possibilities of the mach number variation, if mach 

number is very small ending to 0, we have shown that density is constant. So, we have an 

incompressible flow. 

Then we have shown that if the flow is subsonic, then as area increases velocity, sorry 

area increases velocity will decrease as area decreases, velocity will increase. So, for a 

subsonic flow a diffuser need to have an increasing area or a diverging passage, and 

nozzle needs to have a converging passage. Then we have shown that is other way round 

for a supersonic flow, for a supersonic flow as area increases - velocity increases, as area 

decreases - velocity decreases. And then we have also shown that the limiting case when 

mach number is equal to 1 area is either a maximum or a minimum. So, this we have 

shown from area velocity relationship. 



Then what we did in the last class is that we looked at various combinations of area 

variation. So, that we have either a maximum or a minimum area in between. So, we 

looked at various variable area duct, and then we have shown that this maximum area is 

not physically possible either for a nozzle flow or a diffuser flow, because it does not 

give a monotonic variation in the velocity. On the other hand, if we take it through a 

minimum area then it gives a monotonic variation in the velocity, that is if we have a 

subsonic flow we take it through a minimum area and then expand minimum area. So, 

that if we go through converging diverging passage, then the flow will accelerate in the 

converging area come to sonic speed at the minimum area, and then it will further 

accelerate in the diverging area, because at the diverging portion it will be a supersonic 

flow. So, for taking a subsonic flow and converting to a supersonic flow, we need to 

have a converging diverging area with the minimum area at the throat, where mach 

number is equal to 1, we have shown this in the last class.  

We have also shown that if you have supersonic flow, and if you want to slow it down to 

a subsonic flow, then also we need to go through a converging diverging area, we have 

shown all these cases in the last classes. So, now let us focus on this, because our 

discussion on a topic is nozzle flow. So, nozzle flow essentially is accelerating the flow. 

So, here we look at this case that we have a subsonic flow, we can one referred to a 

supersonic flow. 

Then we need to go through a passage like this, which is a converging diverging passage 

this side is converging, this side is diverging and we have a minimum area in between. 

So, therefore we have proved that in order to get a supersonic nozzle, we need to have a 

converging diverging passage or a converging diverging nozzle. This concept was first 

proposed by a person called de laval, therefore this nozzles are called as de laval nozzles, 

converging diverging nozzles are called de laval nozzles. So, therefore this is something 

that is absolutely essential, particularly for rocket propulsion because we want to 

increase the exit velocity as much as possible, which means we want to take it to 

supersonic speed exhaust, and in order to get that we need to have a converging 

diverging nozzle. So, this is kind of a recap of what we have discussed till the last class. 

Let us now proceed from there, now I would like to get the actual relationship, so that we 

can get the velocity. So, in the derivation of all this where we got in the mach number, 

we have considered we have assumed that the flow is adiabatic and irreversible sorry 



reversible, that is frictionless therefore we have considered to be isentropic. So, now let 

us take it further and look at the isentropic flow through the variable area ducts that we 

are discussing.  
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So, the next topic now is isentropic flow through variable area ducts. So, let us consider a 

duct a converging diverging duct like this, and we have some flow coming in here some 

mach number, we have a minimum area at this point 1, and we have certain area at the 

exit 2. So, let us consider that we have a subsonic subsonic flow here, inlet as subsonic 

flow M is less than 1, we are not specifying the area let say the inlet flow is subsonic. We 

have a minimum area at 1, we call it the throat; throat of the nozzle.  

And let us say that since it is a throat the throat area is the minimum area given by A star, 

then what is the mach number at this point is 1 that we have shown already therefore M 

star is equal to 1. So, we are representing the throat properties by this designated star. 

And if the mach number is equal to 1, therefore the speed of sound is also equal to the 

velocity or velocity is equal to speed of sound at that location. So, these are the 

conditions at the throat at 2 at the exit of the nozzle, let us say that the area is equal to A, 

the velocity is M, the velocity is u, mach number is M or it may not be at the exit at any 

location inside the nozzle; these are the conditions. 

Let us now consider the flow to be quasi one d steady and isentropic with no body forces 

and potential energy negligible. Since it is isentropic, that means it is adiabatic and 



reversible; reversible means it is friction less. So, it is inviscid. So, this is inviscid 

adiabatic flow. Now, we want to analyze the flow for this case. 

So, first from the continuity equation, we have discussed this flows in before. So, we 

have shown that the continuity equation can written as rho 1 u 1 A 1 is equal to rho 2 u 2 

A 2 in this case my 1 is at the throat. So, A star u star rho star is equal to rho u A, that we 

have shown. And we have this condition here that u star is equal to a star, therefore we 

can write A by a star is equal to rho star a star upon rho by u. Then we can write this as 

rho star by rho naught rho naught by rho a star by u, let me call this equation 1. So, let us 

see what we have done here. Here a star is the throat area A is the area anywhere in the 

diverging path of the nozzle, we use the continuity equation to relate this two, then we 

have written A by A star, so area at any location divided by throat area. 

We want to find out now that if area is given, what should be the flow properties there. 

So, area as we know for a quasi steady quasi one d flow, area is a function of A x a 

function of x, right. So, if I start from here at x equal to 0, if I go in the x direction at 

every location at every x, if area is specified we know the area. So, let us say this area is 

known, therefore this quantity is known, because we know the minimum area. We are 

going to find out what will be the density here? What will the velocity here at a particular 

x location, for that what I am doing is that I am writing it first as a star rho star a star by 

rho u, a star is a fixed quantity, because throat properties are known. Rho star is also a 

fixed property, because throat quantities are known, rho and u are the variables.  

Now, after that what I have done is I have divided and multiplied by rho naught, where 

rho naught is the stagnation density here in the diverging portion. Now, if I look at this 

relationship rho naught by rho, the flow is isentropic right everywhere is isentropic. So, 

for any point I can define the stagnation density rho naught, and then we know a 

relationship between rho naught and u in terms of the local mach number right and that is 

what we trying to get. 
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So, what we can do is now this rho naught by rho is a rho naught by rho is constant for 

an isentropic flow right, rho naught is the stagnation density. And therefore, it is constant 

for an isentropic flow with no work, and I like to point out here one thing that if we are 

considering an isentropic flow. Then the pressure can change if and only if there is a 

work right, otherwise the stagnation pressure will remain constant. Similarly stagnation 

temperature will remain constant, therefore stagnation density will remain constant, but 

if there is work done then the flow can remain isentropic, but pressure temperature and 

density will change. So, therefore, in this case there is no work done. So, therefore, the 

stagnation pressure temperature and density are constants. 

So, therefore from isentropic relationship we can get rho naught by rho equal to 1 plus 

gamma minus 1 by 2 M square to the power 1 upon gamma minus 1 let me call this 

equation 2, this is coming from isentropic relationship which you must have seen in gas 

dynamics courses, in aerodynamics courses, etcetera. So, I am not going to definition of 

that this is the isentropic relationship getting the stagnation density, and local density to 

the local mach number, and gamma is the ratio of specific heats. So, gamma is equal to c 

P by c v, this is something that should be known to you. 

Now, if mach number is equal to 1, then what happens to this relationship? If mach 

number is equal to 1, this rho is equal to rho star our throat condition. So, we have rho 

naught by rho star is equal to in this equation I put gamma equal to 1. Now, what we see 



is that rho star rho naught is constant rho star is independent of gamma, sorry 

independent of mach number and this is the relationship which is just a function of 

gamma. So, you can directly solve for this. So, the first term in this equation right hand 

side of this equation can be obtained from this. So, I can write it equation three. So, first 

term of this equation is obtained, second term of this equation is obtained in terms of the 

local mach number, now we have to get the third term A star by u either typically in 

terms of the local mach number. If we can do that then what we have is the area 

relationship in terms of local mach number. So, let us try to do that.  
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So, now here I write some equations, which I would say that you read off from the text 

books, because I am not going to derive that it will take one day to derive that M star 

square is equal to the mach number at the throat square. So, we have here relationship for 

rho star by rho naught and rho naught by rho, next we have to get a relationship for a star 

by u, now in isentropic flows M star which is the mach number where mach number goes 

to 1 is a defined property. All this stars are defined properties how it is defined is that if 

we have a flow field, if we have a fluid particle moving with certain mach number M, it 

may be subsonic it may be supersonic. We catch hold off this fluid particle and then 

either accelerate or decelerate it by traversing of course a certain distance. 

So, that at this point the mach number is equal to 1, then this variation where M star is 

equal to 1 is defined as the is essentially a property of the flow at this point A is has been 



either accelerated or decelerated to mach 1 isentropically. So, if it is moving with a speed 

u then corresponding to that there is an M star where corresponding to that M star there 

is a corresponding to this u there is an M star value. Similarly there is an a star value also 

which is the local speed of sound here, because we can define a T star for this u. Now 

this things you can study again in any book in isentropic flow and gas dynamics, I am 

not going to a details of that what can I show is tell you that that is M star can be 

expressed in terms of the local mach number M here. 

So, now M star is equal to u by a star whole square M star square, which you can get this 

in the text book on gastronomic and isentropic flows will be equal to let me call this 

equation 4. So, as you can see that this M star is defined in terms of the local mach 

number M. So, now this definition here is my M star right u by a star. So, now, looking 

at that equation one I have every term in the right hand side as a function of the local 

mach number M. So, now I can put them back and get an expression for the area ratio A 

by A star is equal to I will just right down 1 plus gamma minus 1 by 2 M square 2 upon 

gamma minus 1 1 plus gamma minus 1 by 2 M square upon gamma plus 1 by 2 M 

square.  

So, here this term here is coming from rho star by rho naught, which is independent of 

local mach number, this term is coming from rho naught by rho which is a function of 

local mach number. This term is coming from a star by u, which once again is a function 

of local mach number as is given here. So, then what we get is A by A star, where A is 

the area anywhere which as I said will come from that area relationship and A star is the 

throat area. 

So, if I know the area a star A and A star, I can get the local mach number by solving this 

equation. So, what will be the mach number here can be obtained by solving this. So, 

therefore I can simplify it little more A by A star square is equal to 1 upon M square 2 

upon gamma plus 1 1 plus gamma minus 1 by 2 M square to the power gamma plus 1 

upon gamma minus 1, let me call this equation 5. This relationship is called area mach 

number relationship for isentropic flows. 

So, once again what it is giving is that the local mach number as a function of local area 

or local area as a function of local mach number and gamma. So, this relationship is also 

very important relationship, that is why typically in the isentropic flow tables, where P 



naught, P T naught, rho naught, etcetera for different P T values mach number are given; 

this values are also give the area relationship. So, these are given in isentropic flow 

tables which you can look up from any table available in any gas dynamic books gas 

dynamics book. So, this equation actually tells us how the local mach number is going to 

vary with the variation in area right. 
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So, at every point here in the nozzle what should be the local mach number we can 

estimate from this. So, it also shows that the local mach number is a function of the local 

duct area a and the sonic throat area a star. So this relationship shows that the local mach 

number at any point is a function of this area, and this sonic throat area. We have now 

what we have shown earlier that the area for mach number equal to 1 can be either a 

maximum or a minimum first point. Second point we have shown that the maximum area 

is physically not possible, it is the minimum area is only possible. Therefore, now if you 

are saying that the mach number is the function of the local area, and the throat area, and 

we have already shown that this relationship that we have derived there shows the mach 

number as a function of A upon A star first of all. 

We have shown that area is always greater than A star, because A star is the minimum 

area right ((Refer Time: 22:22)). This we have already discussed in the last class that the 

A star is the minimum area. So, everywhere here the area is greater than this. So, this is 

one point, therefore this term here is greater than one agreed. 



Now, if I look at this relationship for a given value of A star there will be 2 solutions for 

M M, it is a quadratic equation or quadratic relationship. So, there are two values of 

mach number corresponding to a given value of A by A star; one of them will 

correspond to the subsonic, other will correspond to the supersonic solution. So, one of 

them will correspond to this side of the flow, other will correspond to this side of the 

flow. So, if I plot now this variation now I can remove this one and go into little bit of 

physical understanding. 
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So, if I plot this area ratio variation versus the mach number, then what we will get is at 

mach one what should be this area ratio at mach 1 1 right, this is here. Then from the 

subsonic side this should go like this, right. So, this is mach number less than 1 subsonic 

side area must increase, here in the supersonic side also area must increase. So, this is the 

subsonic, this is supersonic, as you can see here this mach number is greater than 1, here 

mach number is less than 1. 

So, the solution of this equation will take a form like this. So, for a given value of A by 

A star as we are seeing is there are two possible solution, if I take look at any one of 

them. Except from the sonic case, everywhere there are two possible solutions; one is 

subsonic, other is supersonic. Now the question arises that what value this flow will take 

how will the flow know that it has to be a subsonic or supersonic flow that depends on 

the boundary conditions. So, that is again something that is quite critical that what kind 



of flow will exists depends on what kind of boundary conditions that we have. So, 

therefore the next thing we are going to discuss are this boundary conditions. So, what 

we have established is that for a given value of A by A star; there are two possible 

solutions; one will be a subsonic, other will be a supersonic solution. Next we are going 

to discuss how this flow is established whether subsonic or supersonic. So, for that let us 

consider once again a converging diverging nozzle. So, let me know remove all these 

portion and start that discussion. 
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Let us consider a converging diverging nozzle. Let me say it is like this, something like 

this, we have certain stagnation properties at the inlet of this nozzle P naught P naught, 

and the flow is in this direction the mach number is less than 1 here. Then the flow is 

going through the throat where the area is equal to A star is equal to the throat area mach 

number is equal to 1, then it is further expanded in this section where the exit area ratio is 

A by A star, the mach number here is greater than 1, the flow is going in this direction 

and exit pressure equal to P e. 

Let us consider that the inlet area we have something like a bell mouth shape, we have 

something like a bell mouth shape. So, a bell mouth shape what it does is that what is the 

inlet area ratio length, if it is a bell mouth shape it is pointing like this, right. So, for a 

bell mouth shape nozzle the inlet area ratio is infinity, because A i can be considered to 



be infinity. So, the inlet is fed from a reservoir, but the gas is maintained at a pressure P 

naught and T naught, the inlet area is infinity. 

If the inlet area is infinity, what is the pressure and temperature there? Is the stagnation 

pressure and stagnation temperature, therefore my P i is equal to P naught, T i is equal to 

T naught right. So, and also my mach number at the inlet tends to 0. Then we have 

nozzle inlet like a bell mouth inlet then we can get this conditions established, P naught 

and T naught are equal to P i and T i, and the mach number tends to 0. Now for this case 

let us look at how the flow is changing. So, from here to here there is a converging area 

right. 

So, therefore the flow gets accelerated there is an expansion of the gasses till it reaches 

the throat, and after that there is a diverging area. So, now here the flow is supersonic. 

So, there is further expansion. So, the given nozzle essentially expands the gases to a 

supersonic speed at the exit. So, at the exit will get a supersonic speed, and then there is 

only one possible isentropic solution, if it has gone to the exit condition at supersonic. 

Because for the given area ratio A by A star we are supposed to have two solutions; one 

is subsonic other is supersonic. In the case if it has gone to supersonic, then it has taken 

only one solution. So, that is the one solution, but that is the isentropic solution.  
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So, there is for this case to expand low subsonic flow to supersonic speeds through c d 

nozzle there is there is only one isentropic solution. This is important that the solution is 



isentropic. So, we can have only one way of expanding it to an isentropic flow, if we 

have to go through this process, there is one solution possible. In the converging section 

as we are seeing here the flow is accelerated to the sonic speed at the throat, in the 

diverging section on the other hand the sonic flow is further accelerated into supersonic 

flow. 

Let us consider that my origin is somewhere here, and this is my x direction, this is my 

origin 0. Now let us plot the variation in properties along x direction starting from x 

equal to 0, we go up to this point up to the exit, let me say that this is equal to x c up to 

the exit of the nozzle. So, first let me draw this we will be drawing the variation plotting 

the variation of three properties x c, first let us look at the variation of mach number then 

the static pressure we will just normalize it with the stagnation pressure, and the static 

temperature once again normalized by the stagnation temperature. So, these are the three 

properties will be plotting. First let us look at the mach number variation at x equals to 0 

my mach number is 0, then from here to A by A star equal to 1, the mach number is 

increasing, but it remains subsonic right. So, if I plot it here. 

If say this point corresponds to my A star, then it goes from 0 to this point. So, at the 

throat where A equal to A star I get mark one, when I go beyond that there is a further 

acceleration. So, that mach number increases now and becomes supersonic. So, it goes 

like this till the exit where the exit I get mach number equal to M e, this is my x c and 

correspondent area is corresponding area is A. So, this is the isentropic mach number 

variation in the nozzle.  

Next let us look at the pressure variation; the pressure at the inlet of the nozzle is equal to 

the stagnation pressure P naught therefore, this ratio is equal to 1, as the flow is 

expanding the pressure is going to drop, right. So, as the pressure drops the pressure is 

going to drop like this till the throat, this is once again my throat a star. And it will take 

sudden fixed value at this point I will come to that value little late, then it further 

continues to drop till the exit and reaches a given value P e at the exit at x e, where area 

is A e. Now this variation is isentropic right. So, if it isentropic variation we can use the 

isentropic relationship P by P naught is equal to 1 plus gamma minus 1 by 2 M square 

upon gamma minus 1 upon gamma, thus the isentropic relationship. 



Now, let us first look at this point, here at this point mach number was equal to one. So, 

in this equation if I put mach number equal to 1, I get a value for P by P naught in terms 

of gamma. If you consider the working fluid to be air then gamma is equal to 1 by 4 – 

1.4, then this is a fixed value and that value is equal to I will right it here0.528. So, the 

value of the pressure static pressure ratio static to throat pressure ratio at the throat is 

equal to 0.528, where mach number has reached 0.5281. the pressure drop continues to 

move along this, at the exit this what pressure it will take is a function of the exit mach 

number given by this relationship and the exit mach number comes from here which will 

be actually coming from our area rule, right. So, therefore, this variation is fixed. 

So, if our pressure at the exit is equal to these pressure we get an isentropic flow nice and 

smooth isentropic flow supersonic flow. Next let us look at the temperature variation, 

temperature at the throat rather the at the inlet is equal to 1, because it is temperature 

ratio is 1, because the inlet temperature is equal to the stagnation temperature. Once the 

flow is expanding in the nozzle. So, the temperature is going to fall, it will fall up to the 

throat a star and beyond that it will continue to fall till the exit temperature T e, once 

again this is isentropic mach number is varying like this and the temperature ratio is 

function of mach number for an isentropic process given as power minus 1. So, 

depending on this mach number we get certain value of temperature. Once again here if I 

put mach number equal to 1, I get T star by T naught.  

So, that is the temperature here, this will be a fixed value 0.833 for gamma equal to 1.4 

and beyond that it is going to fall according to this relationship, and at the exit for the 

given mach number it will get certain temperature T e. So, what we are seeing here is 

now as long as this process is isentropic depending on the area it must have a given mach 

number. And then if the given mach number is there the exit pressure must be a fixed 

value the exit temperature must be a fixed value it cannot take arbitrary values, because 

it is bounded by the isentropic relationship which guides the flow or dictates the flow. 

So, therefore at the throat we have the throat area a star mach number equal to 1, and 

then beyond that at every location either before the throat or after the throat, the mach 

number is function of the location x, because the area is function of location x right. 

Because here let us say x has certain value therefore, there is certain area and that area 

will dictate what will be the mach number similarly here. So, therefore, everywhere in 

this plots the mach number is dictated by area which is the function of x therefore, at 



every location we have certain mach number which corresponds to certain pressure, 

temperature, etcetera. The exit ratios on the other hand, that is the exit temperature, exit 

pressure, and exit mach number depends on the exit area and the throat area. Throat area 

is fixed depending on exit area, we get certain values of the exit ratios. 

Now this shows us what kind of process is established, but 1.1 more point I would like to 

emphasize here that in order for this force to be established, there needs to be a force that 

will move the flow. So, that force which moves the flow is the pressure force. So, now 

what we have discussed so far that we considered there is a pressure difference or 

pressure force, which will moving it that is we have certain inlet pressure P naught 

certain exit pressure P e which will moving the flow. 

Now, what we will do is in the next class we will discuss what is the value of exit 

pressure which will give us this effect. So, essentially I would like to find out what will 

be the pressure force that will establish a required flow which means. Now, if I look at a 

practical scenario, we have a reservoir, where temperature and pressure are maintained, 

we have attach a nozzle which kind of flow, we will get depends on what pressure we 

have at the exit right. So, therefore this exit pressure now we are going to vary all in 

other words we are going to vary the pressure difference between this and this, because 

that exerts the flow the force to move the flow.  

So, in the next class what we will do is? We will look at the effect of back pressure in 

establishing a flow through a nozzle, and that will again bring us to the discussion of our 

over ventilated and under ventilated. Previously we had talked about over ventilated 

ideally ventilated and under ventilated case, we have shown that the thrust is maximum 

for the ideally ventilated. Now, we will see the physical meaning of this types of flows. 

So, in the next class we will start from there try to establish the flow. The flow that we 

have here. Now we will see that how this flow gets established. Under what conditions 

we get this case, and then we discuss various consequences of the back pressure. So, we 

will stop here do you have any questions, otherwise I will stop here. 

Thank you. 


