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In the last class, we were talking about the viscous disturbance equation for with the 

parallel flow approximation. We had obtained the disturbance equation indicated by the 

prime quantities U prime, b prime, W prime and P prime as given by this three linearized 

momentum equation. And of course, the mass conservation equation there and then we 

went into that Fourier Laplace transform representation of any arbitrary disturbance. And 

that would imply that we would have those amplitudes multiplied by a composite phase, 

amplitude factor, because we talked about that alpha beta omega here, they all could be 

complex. 
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And what we pointed out that, we would be taking a particular point of view, where we 

will be taking about either the spatial or the temporal problem. So, for the time being, let 

us go ahead and look at the spatial problem; that means it will take this omega the 

dimensionless circular frequency to be a real quantity and we will try to find out the 

complex alpha and beta. 

So, those linearized momentum and mass conservation equations respectively give us 

this four equations. This comes from the u momentum equation; this from the v and this 

from the w momentum equation and there is a mass conservation equation. So, what I 

have try to do is tell you that we have a basically four equations for the four unknown 

amplitudes. So, that is one way of looking at it but there are coupled. 



So, if there is a possibility, that we could reduce the numbers. One way of doing it is to 

write it as a set of first order equations, then of course you can see f is an unknown; f 

prime is an unknown here. From here, I will get phi and phi prime as unknown, and here, 

it is from h and h prime is unknown and this relates f and h with phi prime. So, this is 

basically it is a sixth order system, that is what I am trying to point out to you, but there 

is an alternative way of looking at it by simplifying it. That is what we have tried to do in 

the black board. 

(Refer Slide Time: 03:25) 

 

(Refer Slide Time: 03:35) 

 



See let us look at equation 13 and multiplied by alpha, that is what you are getting, that is 

what you are getting. The same way you look at equation 15, the third equation there and 

multiply this by beta, then we get this equation. If we add this to equation up, then we 

can see the following combination emergency naturally. There is a combination of alpha 

f plus beta h in this part. 

Here, you see another part and this of course directly related to phi, you keep it as it is, 

and the pressure term gives us minus i pi into alpha square plus beta square. The 

diffusion terms also we can write it in this form alpha a double prime plus beta h double 

prime, and from here, when we take alpha square and beta square common, inside we get 

alpha f plus beta h. Now, if you look at the equation 16 here, equation 16 tells you what 

alpha f plus beta h is going to be. Alpha f plus beta h could be written as i phi prime. So, 

you can substitute this in this equation and you get this. 

So, what have we achieved here? We have achieved the elimination of f and h, we have 

eliminated f and h. Then what we have? Well we have this equation plus equation 14, 14 

remains untouched. So, what you notice that in equation 14, we have the derivative of pi 

with respect to y while this equation has pi alone. 
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So, what I could do is I could differentiate this 1s. Then from this term, I will get minus i 

alpha square plus beta square turns pi prime and we can see that pi prime can be 



exclusively written in terms of phi. So, there by also we can eliminate pi. So, in this 

process, we get that, we get this following equation. Well, we do get this equation. If we 

do that, we get this equation. 

So, this is a fourth order ordinary differential equation for 5. So, this is a general form 

that we have written down the corresponding form for 2D mean flow and 2D disturbance 

field was a obtained originally by Orr and Sommerfeld and that takes this form. So, you 

can just simply substitute capital W equal to 0, and if you have looking at 2D 

disturbance, you can put beta also equal to 0 that this equation simplifies to this and this 

was what was originally derived and presented by Orr and Sommerfeld. 
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So, this equation 21 is called the Orr-Sommerfeld equation. This is a very famous 

equation. Now, lots of work gets stands starting from the Orr-Sommerfield equation. 

Before we do that, let us say that what we have. The equation that we are just now seen, - 

the Orr-Summerfield equation is a homogeneous equation - there is no right hand side 

term. 

Now, as I told you that those original equations were six first order equations, but 

elimination of that, we bring it down to a fourth order o d e. So, that is one positive thing 

of reduction in form. These equations, if we are trying to solve in a stability frame work, 

then what you should be doing? We should be satisfying subset of boundary conditions. 



For example, on the wall, we may say there are no disturbances. This implies that 

magnitude of u velocity, the amplitude of the v velocity and this amplitude of the w 

component of velocity, so, those are 0s. 

And if we are trying to study how the disturbances propagate, then we will assume that 

those disturbances are of finite energy. So, if you go far away from the (( )) where the 

mean equilibrium flow is; that means if you go y 10 into infinity, then all this disturbance 

amplitude should decay to 0. Please do understand that there is a great deal of difference 

between saying equal to 0 and approaching 0. So, we are not saying that this is equal to 

0, we say that this decays to 0. It is an asymptotic form of the boundary condition. Then 

what happens is basically, we have what? Suppose we start off from some numerical 

infinite location, we will not be able to take exactly at infinity that is out of question. 

So, in a numerical science, if we take a very large value of y and some of use this 

condition there and then we keep marching down, then what do we have? We actually 

have a situation where we have a homogeneous equation with a homogeneous boundary 

condition, and you know that is a recipe for what? That is a recipe of a Eigenvalue 

problem.  
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Well, demystify this Eigenvalue concept a shortly, but what we would find that if I have 

in general, mathematically speaking, if I have homogeneous equation with homogeneous 



boundary condition, the natural solution is the trivial solution, but in addition, they are all 

parameter combinations where we would find the despite homogeneous boundary 

conditions. For the homogeneous differential equation, we will get nonzero solutions and 

those are the Eigen solutions. That is what you may have been introduce to Eigenvalue 

problem. For example, the simple problem if I take a column like this and I apply in 

actual load and then what can happen? It can buckle. 

That is a classical instability problem studied by Euler a long ago. So, the same thing that 

we are looking at homogeneous differential equation with homogeneous boundary 

condition, but then, we will find out a combination of the parameters of the problem, and 

what are the parameters in this case? Well, we have the parameters in this case given by 

those quantities the coefficients in the differential equation, they are nothing but the 

wave numbers alpha beta, the circular frequency omega and the reynolds number as the 

parameter of the problem. Then we need to figure out the combination of these 

parameters such that we get those nontrivial solutions. 

So, that combination as expressed by relation or equation is called the dispersion relation 

or the Eigenvalue relation. What it actually means is that we are trying to find out the 

dependence of alpha beta on omega. Let say we keep Reynolds number fix, then this 

equation 19 gives us a relationship between alpha beta and omega, and what are these? 

Alpha beta is nothing but the wave number, the space dependence; omega is the time 

dependence. 

So, what we are trying to say is that for different frequency, we will have a different 

combination of alpha and beta. So, initially, suppose I create a disturbance which is 

rather coherent at time t equal to 0 which is very localized in time. I have started at t 

equal to 0, then what will happen? It would have exited a range of frequencies, and 

different frequencies will correspond to different combinations of alpha and beta and we 

have already talked about the phase speed in the group velocity. 

We have very specifically pointed out the group velocity is the speed at which the energy 

propagates, and if that is going to with the case, then what we are seeing? We are going 

to see the different frequency component will travel at different speed; that means if I 

create some disturbance, it will disperse with respect to each other. Different harmonic 

component will be found at different place, because they are traveling at different speed. 



That is why this is what we call as dispersion relation. So, if I create a disturbance which 

is localized initially, it will disperse with respect to each other component. 

So, this is straight forward said that we those four first order equations, sorry, four 

disturbance equations and we will have to solve that equations subject to this boundary 

conditions that we enunciated just now, that leads to this kind of a dispersion relation 

easily said. Then now, I have mention to you in the beginning of this course that, why 

Navier-Stokes equation was solved even at the beginning of twentieth century’s in best 

calculator that is non-linear partial differential equation. 

And here, what we have? If I prescribe you with in the mean flow capital U and capital 

W, then these equations are nothing but when they are also even converted into single 

equation, that equation is a linear equation. The only problem is the coefficients are 

functions of y. So, this is basically linear variable coefficients, ordinary differential 

equation and it is not easy to solve. I told you that using a daze calculator; people could 

solve this stroke’s equation in early twentieth century and the first a good quality 

numerical solution emerged in beyond 1950. So, it is not a very trivial exercise. 
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So, this is one of the issue that it is not straight forward. Why it is not straight forward, 

that is what we intend studying now on. So, let us go on with it, and we will talk about it 

in details. We have already talked about the elimination of three variables and writing a 

single equation. The generic form is an equation 20 and it is special form for two-

dimensional disturbance field in a two-dimensional equilibrium flow is given by 

equation 21 and that is what historically has been called the Orr-Summerfield equation. 
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However, we can also see why we would prefer studying one form of the equation over 

the other, like we have talked about eliminating the variables and bringing it down to a 

single equation. Then we talked about subclasses of solving it for, let say we focus our 

attention on two-dimensional equilibrium flow. Now, we have a choice; we have a 

choice of studying two-dimensional disturbance field v is a v three-dimensional 

disturbance field. 

Which one you should study? It is very legitimate to question to ask. Your initial 

reaction would be probably let us go for the most generic case a three-dimensional 

disturbance field, but what we are trying show you here, that is not necessarily this 

smartest thing to do. Let us a work it out. So, let say we are starting two-dimensional 

mean flow, then we can set the W, capital W equal to 0. For the mean flow, it is in the 

stream wise direction given by you, and then, we will defined some kind of a 

transformation. 



Never mind that alpha and beta are complex, but we still can defined it in terms of alpha 

tilde square as the sum of this two. So, alpha tilde is probably as complex. Then given 

omega which is let say real for a spatial problem, I could introduce omega tilde through 

this relation. So, and then the final thing that I could do is Re times alpha I could write it 

in terms of Re tilde times alpha tilde. 
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And then you substitute it in that the 3D disturbance equation that we have shown in the 

previous slide, that is, in 3 2, this 3 2 0, this equation, we omit all this capital W time and 

then this we are writing in terms of alpha tilde square, and then, you can see a significant 

simplification results. So, this becomes what? 5 4 minus 2 alpha tilde square and that you 

can see there is a commonality between that term and this term. All the thing is instead 

of writing alpha square here, I have replace this alpha square plus beta square by alpha 

tilde square. 

And the same way this will also happen the same, and on the side, this term only 

survives; this goes away. This is alpha tilde square once again. What about this? This 

will also be alpha U double prime phi. So, you can see we can introduce, they are all 

these alpha terms. So, if I can factor out an alpha, then I will get alpha Re and that would 

be nothing but alpha tilde Re tilde, and if I do that, I will get exactly this equation but 

everywhere this parameters would become in form of tilde. 
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So, that is what was done by square. So, this transformation is what is called as a square 

transformation, and what it does basically? It reduces the 3D disturbance equation in an 

equivalent 2D disturbance form. So, this is also that Orr-Sommerfield equation that we 

talked about. So, whether we are looking at 2D disturbance field or 3D disturbance field, 

for a 2D mean flow, we can always bring it down to this. 

Now, let me basically talk about this equation. Now, if I compare the results of 2D 

disturbance field and 3D disturbance field, how do I compare? What about the 

magnitude of alpha tilde? It is greater than magnitude of alpha. What about Re tilde? Re 

tilde is nothing but Re into alpha by alpha tilde. Since alpha tilde in magnitude is greater 

than alpha, so, Re tilde is going to be less than Re tilde. 

So, if I now find out a critical Re tilde, let says it is 500 but the corresponding Re for the 

2D flow will be worked most in that. So, what you are seeing basically that the 2D 

disturbance field is going to give you more conservative estimate. It will indicate 

instabilities faster than the corresponding three-dimensional disturbance field. This is 

what is called as a square’s theorem. 

So, square worked it out and he said that suppose if we all looking at in terms of 

magnitude wise, then it 2D disturbance field will become unstable earlier compare to 

with 3D disturbance field. That is the reason I suggested to you that it may not be a good 



idea to look at the 3D disturbance field. So, this square’s theorem very clearly identifies 

that it would be better that you studied two-dimensional field. It will give you the more 

conservative estimate. This also brings to your mind what we talked about in terms of 

Kelvin-Helmholtz instability also. There we found the disturbance where essentially 2D. 

The group velocity in the other direction was 0. 

So, what it basically tells you that when it comes to stability studies etcetera, it is not 

necessary that you make the problem more complex and try to study it. Even the 2D flow 

will give you an early indication of whether the flow is stable or unstable, and if there are 

simultaneous presents of 2D and 3D disturbance, 2D disturbance are most catastrophic 

then 3D. 
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So, that is why you will find that many a times, you will focus our attention on 2D flows 

more than on 3D flows. This probably goes against the common brain of thought among 

practitioners people always think that anything bigger and more complex or to be more 

interesting from a physical point of view. Here, we are saying just the opposite. 

Sometimes the simpler thing gives you more inside than the more complex things. So, it 

is a philosophical point but it happens to be the case in many real life scenario also 

conduct simpler studies, but go deep and draw better conclusions. Never try to hide 

behind complexities, it does not yield too much of results. 



Now, I would like to bring to attention on attributes of instability studies as I told you 

that ideally it would be nice to talk about disturbances which grow both in space and 

time. Despite that, we have classes of flows where we would see the disturbances grow 

in time and there would be other class of flows where it will flow in space. Give you 

simple example flow plus positive black body like flow positive cylinder. 

If you are positioning yourself in the week of the cylinder, you would always notice that 

the disturbance is actually grow in time, of course, those disturbances migrate. You have 

seen those shade vertices, they do move, but if you look at the near wake point, the 

disturbance actually at a given point grows in time and after a certain formations of this 

convection starts. So, if you are in the near wake, things are happening in time not in 

space. There a bubbles there and grow, and once it achieve some critical relative 

strength, then one of it initiate the other one a subdominant and the scenario reverses 

itself in each of cycle. 

So, basically the near wake of a black body is a very good example where things to 

happen to grow in time and those kinds of disturbances could be studying using what we 

called as a temporal amplification theory. So, that is a euphemism for basically 

considering omega as complex. 

So, here, omega will be complex and the real part will determine the phase and the 

imaginary part depending on sign, it will tell you whether the disturbances are growing 

with time or decaying with time. That is what we want to do. That is easily perceived if I 

substitute omega as omega r plus i omega i. So, omega r part remains here in the phase 

part and omega i part I could put it in terms of the along with the amplitude of the 

disturbance quantity. So, this quantity in parenthesis here is basically the net amplitude, 

while this part grows with varies into y; this part tells you how it is going to grow or 

decay with time. Please do understand though I did not write it explicitly apart from y, it 

is also function of alpha beta and Re if the implicit dependence is very much there. 

And if I am looking at temporal amplification theory, what I could do is basically I am 

treating alpha and beta is real. If alpha and beta is a real, then I can define a magnitude of 

the wave number. What is alpha and beta? Then the, for the disturbance field, the wave 

number in the x and in the span wise direction, the z direction. So, basically then, what is 

alpha bar alpha bar is the resulted wave number vector magnitude. 
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So, I have a component in the x direction alpha; I have a component beta in the z 

direction; this alpha tilde is the net resulted. So, that is how you interpreted that alpha bar 

is essentially the magnitude in the wave number vector propagation direction. So, what 

we are talking about then? We are talking about a component alpha and beta, and then, 

what we are getting is alpha bar vector that is this, that is the alpha bar. 

And this angle subtended alpha bar with alpha axis that is what I will call it as psi. So, 

psi basically gives me the propagation angle with respect to the x axis, because this is 



also the x axis and this is your z axis. So, this is what you are getting. So, what happens 

is we have the real frequency given by omega r, and then, we have found out the result 

into wave number vector alpha bar. So, omega r divided by alpha bar would be the phase 

speed of propagating disturbance in this direction. 

Now, what we also see it in the previous slide that, if I write down the disturbance 

quantity as a function of space and time, then we had this factor q hat which we called as 

a function of y, and then, I mention implicitly. They are also functions of alpha beta and 

Re, and what else we had? We had also e to the power omega i t. 

And the phase part is given by alpha x beta z minus omega r t. So, this quantity that I 

have written here every in braces is nothing but a. So, this quantity is what I call as a. So, 

a depends on of course y alpha beta means what? x and z. So, it is like this; it is a 

function of phase this part times a function of time. So, what I could do is if that is a, I 

could write it as dA dt. If I do, what do I get? I will get omega i times this, and what is 

this? This is a. So, this is going to be omega i times A. 

And this helps us in defining omega i as nothing but equal to 1 over A dA. That is what 

you have in equation 25 here. You are saying that by some means, say suppose you go 

the lab and do the experiment, measure the amplitude. So, you will be getting A, and if I 

measure it as a function of time, I should be able to evaluate this derivative and I divide 

by the amplitude instantaneous there. I am going to get an estimate for omega the 

temporal growth entry. 

So, this is something that one does in temporal theory, things are pretty much simple, 

because what you have? You have a flow may be coming in which direction? We are 

talking about two-dimensional disturbance. So, the flow is coming in this direction but 

the disturbances are not aligned with the flow, they are actually going at an angle psi. 
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So, that psi is an ambiguously obtain from there and then we can also calculate the 

growth rate by following the amplitude along that. Next, what we could do is we could 

look at the complementary picture, but anyway, we have done this, but let us nonetheless 

summarize what we have omega if basically is going to tell us whether the disturbances 

growing or decay. 
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So, for example, if omega i is negative, of course disturbances are going to damp with 

time. If omega i happens to be equal to 0, it will insensitive with respect to time; it will 



not change in time, and if omega is positive, then those disturbances amplify with time, 

this kind of a pretty much obvious. Now, we could also have flow scenarios where the 

disturbances are seen to convict to space. As they convict in space, they grow. 

So, what is the example? Very simple flow where a flat plate there you will see. The 

disturbances do not grow with time; they convict and grow in space. So then, what we 

should have there as a recipe, we cannot talk about disturbances with real wave numbers, 

a wave components. So, what we would be talking about? We will be talking about 

disturbances for which alpha and beta are going to be complex quantity, but that still 

does not say that omega should be real or complex. What happens is the complete spatio 

temporal problem where all of them are complex is later on intractable. 

So, what happened is when this stability theory is based on Orr-Sommerfield equation, 

we develop Prandtl and (( )), they did see that this disturbances actually can be handle 

where they grow in space and treat omega as real. So, we are talking about a pure spatial 

theory, where omega is real; alpha and beta complex. This is what we actually would be 

doing for the sake of simplification on the theory, and as of an I joked about it in earlier 

times, we have a situation like we have a key. We do not know where the lock is. So, we 

first generate some solutions which we can effort to get the solutions and then you look 

around in the nature and try to find out where that depiction seems good. 

So, it was one such effort, because of the difficulty, we have force to adopt spatial 

theory, and then, as let would have it, it works fine for flow over flat plate or boundary 

layers. This is something that we have seen all are I must say based on what we are doing 

currently. You in only last week we will looked at some results. We do see that if we 

excite a system with a fixed frequency omega, what we find that the response of the 

system is not necessarily be also with omega, there is some amount detuning. 

So, if I give omega, it could be omega plus minus d omega; there would be some 

detuning. So, in reality, in most of the flows that we really come across, we can 

predominantly talk about temporal theory or spatial theory, but strictly speaking, we 

should really talk about spatial temporal growth, which you will be talking about when 

we come to lot of any of the simplified module that we have looking at. Suppose we are 

able to solve the full Navier-Stroke’s equation, then we can work in frame work we do 

not have to make simplifying assumption. 



So, some of the results in the later part of the course, I will bring those to your attention 

and we will see what happens. For the timing, let see historically how things are develop; 

people still continue to use. Please do understand that these are not trivial exercises. In 

designing an aircraft wing, we actually use instability theories in designing the wings. 

Now, talking about spatial theory, let us consider alpha as this; beta as this. Then the 

disturbance field as a function of space and time, we could write it like this. 

Now, you can see what happens is the real part here of wave number component, and 

this, they actually get together to defined the phase of the problem. The imaginary part of 

alpha and beta brings out this factor, and please note that here, it is with a minus sign 

unlike what we had there in the temporal theory, there it is a plus sign. So, what happens 

is we can obtain the alpha i's and beta i's, and if they are such that they are negative, 

there net some effect is negative, then of course this will grow in space. 

So, we will talk about it slowly. Now, spatial theory is somewhat reliable complicated 

than a temporal theory. Temporal theory we saw that we have an alpha and beta which 

are real that signified that we were going along a particular direction, but here, the 

scenario is a little more complex, because the real part here alpha r and beta r will help us 

in defining the phase speed, the group velocities. 
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So, that would indicate the direction in which the disturbance propagating. However, 

alpha i and beta i did not necessarily be in the same direction; that means what? The 

wave mid go in one direction but it can grow in some other direction. So, this is 

something that we must appreciate. To appreciate that, let us once again talk about the 

flow and once again along the x axis let say I define alpha r. So, flow is in this direction 

which we are talking about U. That we could talk about beta r. So, that is in the z 

direction, and then, we can talk about a quantity called alpha r bar so that well, it, for 

beta where we could keep it. 
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So, what we are going to have a basically alpha r vector in this direction. So, this is the 

wave propagation direction and tan inverse of beta r by alpha r is going to give me psi. 

That is what your last equation here is. So, that is what we would be looking at. It is 

almost like what we seen in the previous case, and what happens is since omega is real 

from the spatial theory, we can very clearly work out this expression for the phase speed 

that is nothing but alpha r. 
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Now, you have also seen the disturbance will grow or decay will depends on alpha i and 

beta i. So, I could perhaps defined beta i along this axis and let say alpha i along axis. So, 

what I can do here is I can identity a resultant quantity which I will call as alpha i bar. 

So, this is my alpha i bar. Alpha i bar as you can see is this square root of alpha i square 

plus beta i square. 
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And then, I can talk about this angle as phi bar. So, what we could do is we could define 

axis system. This I will call it let say x bar and this I will call it well, I think here I have 



use this notation; this is x tilde, and along this, I will talk about that in x bar. Then what 

happens is the disturbance field that we are talking about as a function of space and time. 

Then I will write it as once again the amplitude function of y, then I will have alpha beta, 

well, they are going to be now the parameters which I will write it somewhat little more 

carefully. I will write it as omega and Re, and what happens is I have that growth top 

which was nothing but minus of alpha i x plus beta i z that I could write it as simply 

nothing but alpha i bar times x bar. 

So, I could do that. So, basically what we are essentially writing is essentially this alpha i 

bar x bar is equal to alpha i x plus beta i z. That is what it is, you can see. So, alpha i x 

plus beta i z resultant is alpha i bar x bar. So, that is what we have a written there. So, 

this is this part once again put it in a side the brace, and phase part it is going to be this, 

that is nothing but alpha r bar x tilde minus omega t. Once again we can call this as the 

amplitude, this is the amplitude part. So, we have got it an amplitude which gives us this 

kind of dependents. So, from here, what I could do? I could differentiate this amplitude 

with respect to x bar. Then what do I get? Minus alpha i times a. So, if I divided by A, I 

will get this is equal to minus alpha i bar. So, that is the spatial amplification rate where 

amplification would decay will depend on the following condition that we have it in the 

slide. 
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So, if I somehow contrives to prescribe psi bar and then obtain this quantity numerically 

or experimentally, then I will get the whole quantity as minus alpha i bar. So, if alpha i 

bar happens to be positive, then that would be a decade solution while alpha i bar equal 

to 0, then we have neutral stability, and of course if alpha i bar is less than 0, then we 

have instability. 
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Now, this of course presupposes something that we know this direction x bar 

unfortunately in the spatial theory. We are going to find out both alpha r alpha i and beta 

r and beta i. So, we do not apiary know what is our prefer direction x tilde x bar none of 

these are known. So, what we could do is we could actually really try to find out the 

different alpha r beta r combination and corresponding alpha i and beta i we find out and 

we find that alpha i and beta i also would be different in different direction, I could have 

that. 

So, what would happen that this is a very funny scenario. The flow is coming like this; 

the wave may go in this direction, but the growth may be in the Re another direction. So, 

this is far too many unknowns and this makes life very complex. How can we get around 

that is not an easy answer. 
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However, what we know is that we have a general dispersion relation of this form that is 

how the circular frequency is related to the wave number. If we have some such relation, 

then we can differentiate those omegas with respect to alpha and beta, and then, we get 

the corresponding group velocities. When we are differentiate with respect to alpha and 

beta, we are here talking about differentiating with respect to alpha r and beta r. 

The real part, the real part defines that will helps us define the group velocity. So, that is 

how we have to do. Now, in temporal theory, we used omega equal to omega r, and in 

spatial theory, we use bar; this is not strictly a correct thing, but what it basically says 

that in calculating the group velocity, we will have to use alpha r and beta r; omega is 

already real, and so, in temporal theory, what you do? You take the real part of omega 

and differentiate it with respect to given alpha and beta which are real so that sign and 

we goes. Now, in the spatial theory, omega is real but you do have combinations of alpha 

r’s and beta r’s, and if you differentiate them, and then, you get the corresponding group 

velocities. 

So, different alpha different beta r’s will play in different directions find in a group 

velocity. However, we can see that some of the time growth can be related to the spatial 

growth if we know the speed at which the disturbances troubling with. 

So, that is what is written here heuristically. We will prove it, we will prove it rigorously 

somewhat later but this is what Schlichting did while Tollmien was the first to calculate 



the critical value of Reynolds number above which flow becomes unstable. Schlichting 

actually worked out the various growth and decay rate for using spatial amplification 

theory and please do understand that this kind of complications that we are getting it is, 

because we are talking about three-dimensional disturbance field. 

So, alpha and beta making all this things, but if suppose I too look at 2D disturbance 

field, then what happens? Then everything goes in the x direction. So, all this 

complications are with respect to three-dimensional disturbance field; it is not somewhat 

imaginary or illusory to consider that. 

Because let say if we are designing in a craft wing, we do out very often see that a very 

good exercise for one to undertake would be to drop away an aircraft a dark night and 

harm yourself with an infinite camera and just take the picture of the wing alone and you 

will see lots and lots of interesting thing happening, because who know the heat transfer 

rates are going to be different depending on whether the flow is laminar or turbulent. 

So, you could actually pick up the foot print or the portrait of which part of the wing is 

laminar, which part of it is turbulent, and then, as you go alone, we will see which way 

this laminar and turbulent flows are there and they are not going to be necessarily 

studied. Depending on flight condition, you will see all kinds of instants and the better 

thing is to do is sum up an experiment. 

You put an some kind of a exciter on the wing, a point exciter on the way, and let say we 

create a mechanical vibrator on in the way, then vibrate it, and from that single point, 

disturbances will come out in three dimension and there we will see all this nice things 

we should be able to pick up which way the disturbances are propagated. Well one has to 

do additional work; you may have to probably heat the wing from inside to amplify those 

pictures better, but you see that spatial theory is little more complex than temporal 

theory. 
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So, that is what we need to look at. Now, that is what we are talked about that we can 

actually relate the spatial growth rate with the temporal growth rate provided. We know 

the group velocity and the group velocity components we are just now talked about. This 

is the group velocity in the z direction; this is the group velocity in the x direction. The 

ratio of the two defines that angle psi bar that we have shown here. So, that is what you 

do. How do we get this? This is something is a heuristically arrived at by Schlichting. 

Schlichting did all that, because you see, temporal calculations are easier to make 

compare to spatial and he was doing temporal calculation. 

So, he was basically analytically and numerically obtaining omega i, but then, if you 

know the group velocity, then you can convert that temporal growth rate into spatial 

growth rate. This is what the implication of this equation is. Now, why does it happen 

that way? Why does that happen is given out by properties of complex functions. So, 

what we have? Think of the real part of the frequency omega r. 
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So, what I could do is - I could write this complex omega is a function of complex alpha. 

If I have that, I could write down the Cauchy-Riemann relation. So, this is basically a 

Cauchy-Riemann relation; omega written as a function of, I do not know if you recall 

that is what we do. Suppose we write W equal to u plus iv, and then, we write Z equal to 

x plus iy. Then we talk about omega being a function of z, and for the derivatives to be 

analytic, we get the Cauchy-Riemann relation. 
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How do you get, how do you get? Tell me how do you get. What is that? And this is how 

we get Cauchy-Riemann relation and that is precisely what we have written. So, you see 

that; so, omega as a function of this, we have derive this where it will take little more 

time. So, we will continue with this discussion in our next meeting tomorrow, well, 

amplify this issue, how we get this equation 36. I will stop here. 


