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So, in the last class, we are trying to figure out for turbulent flows, the various scales 

those are invoke, and to understand that, we wrote down Navier-Stokes equation in terms 

of the vorticity. So, this is the equation that you would have, I did say it today again I 

emphasize that in writing that vorticity transport equation, you get better picture of the 

various processes those are involved. For example, this is your substanship derivative on 

the side, but this is the additional term which we call as the vortex stretching term is 

important, because this is only present for three-dimensional flow and not for two-

dimensional flows.  

So, this point of view actually helps you in understanding distinguishing between 2D and 

3D flow field and also this is a non-linear term. So, we would like to see how this non-

linear term affects the flow dynamics. 
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So, if we then consider again for the purpose of analysis, the flow to be inviscid and not 

have any body force, or even if it is there, let us say this is given as a conservative force, 

then the body force does not come into the vorticity transport equation. And then, what 

happens is we get the simplified equation like this. So, the derivative the rate of change 

of vorticity is solely driven by the vortex stretching. 
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So, this is the term that we have discussed. Let say what happens is this is only present in 

3D flows and 2D flows omega and grad operator or in quadrature. So, they would not 



have any problem, and I was explaining this yesterday by considering a special case, 

where let us say we identify a fluid element of this cylindrical topology with the vorticity 

predominantly in the z-direction, and if we look at the velocity of the two ends given by 

u top and u bottom, so, if it is a kind of stretched, then what is the consequence that we 

wanted to figure out? 
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The way we have drawn the velocity vectors here it shows it is kind of a stretching term, 

and then, once you see that, what happens is the fluid element is going to be stretched 



and we are talking about inviscid flow. So, our all kinds of momentum are conserved 

including the angular momentum. Angular momentum is now given by I zz times omega 

z. So, basically if we are looking at the angular momentum here as simply I z z omega z. 
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Now, because of this fluid element stretching due to this rate here del u del z, what will 

happen is if this is greater, then what will happen? The element stretches and I zz 

decreases. As a consequence what you are going to get is that omega z is going to 

increase. So, this is the consequence of that vortex stretching term because to maintain 



the angular momentum conserve if I z z come down, this must go up. However, if you 

look at globally over the flow field, the overall angular momentum should be conserve 

also and the vorticity also would be conserve, and then what happens is if locally there is 

a variation in omega z, there must a corresponding reduction in other components. 
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So, that comes out we can show in terms of a tree diagram, like if I have omega z here 

and then because of this stretching term, that omega z is increasing, but then, that will 

effect omega x and omega y; so, we get a corresponding variation in omega x and omega 

y, and again, if the fluid element experiences some kind of a stretching. 

Let us talk about stretching compression also will bring in the exactly the same effect but 

it will be just opposite in sign. Vorticity will be changing sign, but if you look at the 

corresponding contribution to enstrophy, it will always be additive. So, enstrophy keeps 

changing. So, if I now have this elements omega x and omega y I change, that can 

further mode bring change in omega z and omega y and the same way this will bring in 

change in omega x and omega z. 

Then further more if we go one generation down, this omega z will affect omega x and 

omega y. This will bring in change in omega x and omega z. So, this is a kind of a 

composite picture that you can keep thinking about, that is going to happen, and if you 

keep on doing it further down, then what you are going see is that, although you started 

off with let us say in homogenous change in omega z, subsequent change is going to be 



sort of all pervade because you are going to change. Change is the happening in omega x 

in three times omega y, three times omega z, two times, and if you look at the next 

generation, each one will (( )) another couple of them in Quadrature. So, what happens is 

this keeps on happening going down them tree. You are going to see these smaller and 

smaller changes but they are going to be isotropic. So, this isotropic behavior of vortex 

stretching also is used in turbulence modeling when one does large a d simulation.  

There if you are looking at the vorticity at the smaller scales, they are going to be as 

isotropic as it is indicated here, and, this, this, if this is not resolve in your computation, 

then you can model it because now you are armed with that additional information that 

this is isotropic. See basically modeling is always helped once you know what is 

happening. For example, previously we saw in case of time average equation, how 

Reynolds stress was correlated with the mean strain rate and that helped us developed 

turbulence model. So, in the earliest model also we make use of the fact of that, at the 

small scale, at the sub ridge scale, we have isotropy. That is a very hopeful sign and good 

news for one to do that. 
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In this following, we just simply said look you do not really need to only talk about 

enstrophy or anything but you can look at the nth moment of the vorticity and find out it 

is time rate of change, and then, you are going to get this. This we can put it inside, so, 

we will get n omega raise to the power n minus 1 times del omega del t. 
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Now from the vorticity transport equation for inviscid flow, this local change is given by 

the convecting change as well as this vortex stretching. So, we can put it up there and 

that is what we did in yesterday’s class, and what we really found was that, we get two 

sets of term one comes out from convecting term another comes out from the stretching 

term. The convecting term can be written down in terms of this as a volume integral, and 

this is the stretching term, that is written like this. This could be, because this is written 

in a conservative form; it is a divergence of omega n u. So, we can converted into a area 

integral over the controls of s and this is what we get.  

Now, for 2D flow, this does not exist, we know that. The first term is 0 if we consider the 

boundary condition. What happens is if you are looking at the far field boundary, the 

vorticity itself is 0. If you are looking at the solid boundary, no slip condition will ensure 

u is 0. So, this will not be 0; this is already absent. So, for 2D flow, we find that any 

order moment that you look at for vorticity does not change with term. 
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That was what we were talking about. Remember that, if omega z increases, then 

corresponding omega y omega, that comes about probably if I look at some kind of a 

knob say enstrophy that will be omega x square plus omega y square plus omega z 

square. So, if omega z square increases, it better be that omega x and omega y decrease 

and this whole idea of this tree diagram that we had. So, this is one thing that we can 

establish for 2D flows. For 3D flows, the time rate of change is given by this the 

stretching term. 
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So, stretching is a very important role to play for three-dimensional flow. It can tell you 

how the various moments of vorticity can change with time. If you add the viscous 

effects, of course this term will have to come in; this will also affect the moment here 

with respect to time. However, when we talk about viscous flow, we need to also 

understand that the solid body itself is a source of vorticity generation, because if the no 

slip condition, vorticity will have to be generated; so, that adds to the moment. 
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So, whatever we are discussing strictly for viscous flow, they are all together difference. 

So, we need to keep that in mind. So, let us try to understand what we get by defining the 

enstrophy here, is a square of the vorticity and this is the generic definition in terms of 

the permutation symbol e i j k Re j n and this is what we discuss that, if they are in order 

when cyclic order, then that is positive 1, but if the cyclic order is broken, it become 

some anti cyclic permutation; then it gets a minus 1, and if any of this two indices are 

same, they actually do not contribute anything. 
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What happens is this enstrophy can be written down as a combination of two sets of 

terms which we have written it down here in terms of this Kronecker deltas and you can 

see that these will only work when your m will become equal to j and k will become 

equal to n. So, that gives you the first component and this is the other component where j 

becomes equal to n means this is u j, and when k becomes equal to m, so that will be this, 

so, that is, that is what we (( )). 

(Refer Slide Time: 13:45) 

 



So, this is basically a two sets a part with this is the gradient u square. So, what you find 

that enstrophy is related to a gradient of the velocity field that normal. This term that 

comes about from the second set is going to be 0. If we are talk about a periodic problem 

or if we are talking about mostly boundary condition will cooperated, there will make 

that second term equal to 0. 

For general case, the enstrophy measure is given by the velocity gradient measure. So, 

we can make use of this equation 45 in further developing our ideas. If we start writing 

out, again the energy equation for the velocity field as it is written there. What we can do 

is we find then this is what we get. 
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If I take the momentum equation and take a dot product with the velocity field, then we 

get the time rate of change of kinetic energy that is given in terms of this. This comes in 

the viscous dissipation term and this from the body force term. Since now we have 

establish, this quantity itself is equal to enstrophy. So, you can very clearly seen what is 

the role of enstrophy. Enstrophy actually tells how the energy is grained out because of 

this viscous diffusion term. So, enstrophy is a very powerful tool. 
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Now, what happens is we could also see that enstrophy could be written in terms of its 

enstrophy squared is nothing but grad u square. 
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So, what is grad u? Grad u will be, if I am talking about this, so this goes as (Refer Slide 

Time: 15:24) So, if I write u in terms of u at e to the power i k x d k, then what happens 

to grad u? So, this is I could write it has k vector dot say r. So, then what happens is I 

could get this would be equal to nothing but professional to i k vector or u hat which is a 

function of this k vector times e the power i k that r d k. 
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So, now, if I square it up, I can see that this is going to be like k square and this is this. 

So, this goes like this. However, this is what from the Percival’s equality, this also 

represents e of k. If this is the specific kinetic energy in the k space, that is also the 

kinetic energy in the… So, this has a role as we have written down here e of k. So, 

basically the vorticity is something like this. 
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Now, consider a packet. Let us now consider a packet of energy which is initially 

concentrated at a low k value. Suppose the body force is not acting upon at the low k and 



you are also neglecting the effect of viscosity at very high k. Then what happens? If we 

are looking at inviscid flow, I know the energy is conserved, E k d k is conserve. That is 

what we have obtain. 

What happens to the vortex stretching work? That we have seen that increases the 

enstrophy. That is what we have been talking about here that, if I, well, we saw it that if 

because of the stretching, this will increase, enstrophy increases because the vortex 

stretching. 
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So, if enstrophy increases, then what is happening? We have given an estimate of 

enstrophy as k square E k. So, what is happening is we have a very interesting situation 

that this is conserved, E k d k is conserved, whereas k square E k d k is increasing. How 

can that happen? It can only happen if you transfer the energy from low k to higher k 

because it is multiplied by k square. So, if this contribution has to increase, then I have 

some low k contribution in E transfer into high k. 
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This is the mechanism of energy cascade due to vortex stretching. So, that is we have 

been talking about. We were talking about those idea for a long time what E k does with 

k that, if I talk about vortex stretching, this will essentially do that. 

That if I campaign energy here at low k, because the vortex stretching term that energy 

has to shift to this. So, this is what we put, we calling as a cascading effect. The energy 

cascades. That is what we are talking about. So, that is why I show it with a very bold 

remark here. This is the mechanism energy cascade and this is a non-linear effect. 

In fact, this idea has been so much interest into the thinking of turbulence community 

that people do not like to acknowledge, there can be any other mechanism of energy 

transfer. So, whenever you look at source material people only say, turbulence has to be 

three dimensional. It cannot be two d because there is no stretching. So, how is energy 

spectrum be explain, but we have lots of counter examples. We have seen like Kelvin-

Helmholtz instability is one where we saw what was happening - bigger eddies were 

breaking down into smaller eddies. So, that means what? And you know, tell me Kelvin-

Helmholtz instability is more dominant in 2D flows compare to 3D flows. So, here are 

counter examples people conveniently forget. Then we have also seen bypass transition 

effects. 

What did we see that, if a single vortex is just simply moving at a constant speed; there is 

no trace of any unsteadiness, but what happens down below in the boundary layer? We 



get vortices erupting all over the no slip boundary and that is a very high white band 

phenomenon. So, there are something, but please do understand that for 3D flows at least 

vortex stretching helps you explain how energy is transported from low k to high k. 
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We have of course noted that if you are looking at real flow, the enstrophy increases. 

Now, if I look at the role of viscous term in k space, the viscous term is like this. This is 

a second derivative of you; so, that will be minus nu k square u of t. 

So, if I am talking about u as a velocity scale, then I can say the viscous effects are 

negligible compare to the non-linear term. So, this is a viscous term nu k square and this 

is your convection term like del u del x term. So, del u del x will be nothing but i k times 

u; so, that is this. So, if this is the case a viscous term is less, then what does it 

correspond to? That this k L is much smaller compare to Re. So, what does it mean? That 

those events are, because these are the places where viscous effects are going to be 

negligible for those cases, and which are those cases? The small case. That is what we 

are saying. Re is large, and to have this condition validated, we must have the 

corresponding non-dimensional k much smaller than Re. 



(Refer Slide Time: 22:49) 

 

So, if I am talking about it, so this is the region where the viscous effects are negligible 

compare to the convection terms nonlinearity. On the other hand, if you look at nu k 

square far greater than this that will be what? This corresponding k L will be much larger 

compare to Re. So, if you prescribe a flow with a given Re, so it basically gives a kind of 

a line of demarcation, and one side to the left of it, viscous terms are unimportant; to the 

right of it, viscous terms are important. 
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So, you can see that when we are talking about it. So, if I draw a line non-dimensional k 

along like this, so, this is the boundary that is determine by Re. So, on this side, viscous 

effects are unimportant; on this side, viscous effects are important. So, that is the one 

way of interpreting this slide. 

(Refer Slide Time: 23:59) 

 

So, that is what O said Reynolds number roughly demarcates the border in k space 

whose evolution is dominated either by viscosity or nonlinearity. So, we are talking 

about a truly time dependent flow. Turbulent flows are in time dependent. So, this is not 

something, you know, it is frozen because what we are talking about? 
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This border itself will keep moving depending on whether the nonlinearity is important 

or the viscous term is important and both this terms keep changing with time. So, if that 

is so, this boundary line that we are talking about which is of the order of Re that will 

keep moving about. This is something we should remember.  
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If at all we arrive at a statistical steady state, flow is unsteady but we still can get a 

statistical steady state. Then what happens? This is the picture that we drew; that we are 

providing energy at large physical scale or small k that could be due to body force that 



could be due to many things. If I put in a sort of a cylinder in a flow, that this size of the 

cylinder determines what is the larger size of a d that will be form. So, there the 

disturbance energy gets created at small k. Then we have seen nonlinearity takes over 

and it creates this cascade and it goes over there. It comes there and it cannot go on 

indefinitely, it goes and stop somewhere, where actually the viscous losses or transported 

into mechanical energy converted into thermal energy. 
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So, heat is getting created. So, that is what we mean by kinetic energy being dissipated 

by viscous action at high wave number. 
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So, if I am now talking about this scenario for a time dependent flow, then what can 

happen? I am putting in something here; I am taking it out here. So, the steady state has 

reached. That means what? Whatever is put in there the same amount, goes out there. 

That is your definition of an equilibrium steady state. That is what Kolmogorov started 

looking at and he said that at the steady state, the energy input rate on average is the 

same as the energy dissipation rate. 
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Now, let us look at the average energy dissipation. That we have seen nu times gradient 

u square. So, what happens? What happens is we can find out it is a time scale. So, what 

is it going to be nu. Nu is what? nu is a dimension of L square by T. 
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Now, what about grad u? What is this dimension? So, what is the dimension of epsilon 

then? It will go like L square T to the power minus 3, is not it? That is what we are 

seeing, this into this square. So, that is what we say. The dimension of dissipation is L 

square T to the power minus 3. 
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Now, if I have reached a steady state, I am pumping in energy here; I am pumping in 

energy there. So, what happens? To some range in the middle, it does not matter what 

you are putting in on the left and what you are taking it out on the right, that is precisely 

what we are seeing that, we can have some such range, where the energy density 

spectrum E k is independent of what you are putting in and what you are taking out. 

So, what do will happen? If I am looking at there, this intermediate scale which I called 

as the inertial subrange. The structure of E k is determined solely by the non-linear 

energy transfer mechanism. How this cascade is going? How far it will go? Whether it 

comes and stops here or whether goes there? So, it depends on what? Where exactly this 

energy is taken out? So, the dissipation is important. It will also of course be function of 

k, because that is what we are looking in the k space. So, what happens to the energy at 

this k is different that this. So, there is a direct dependence of k. So, basically, in this 

inertial subrange which is either on to the left or to the right in the middle, we are taking 

about the middle ground which we called as the inertial subrange, where this epsilon 

would be a function of epsilon and k. Why do not we talk about the energy supplied, 

because that is itself equal to epsilon, because this is we are talking about the steady 

state; so, they are same. So, that is why I did not put three terms two terms are adequate 

because energy input is equal to energy out go. So, that is why we can write this E as 

this. 
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Now, what about dimension of E? How do we go about doing that? See, dimension of E 

if you recall, it is something like this. The energy is something like this and what was it 

that we saw? That was like E k d k, fine? Do you agree with me? So, what about this 

then? This is the right hand side dimensional E is dimension of energy, and what about 

dimension of k L? On this side, what will have? L T to the power of minus 1; so, L 

square by T square. 

So, E. dimension of E then is going to be L cube T to the power minus 2. That is what 

we have written - dimension of E k, it is L cube T to the power minus 2. 
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Now, you have the dimension of E. We said that E is a function of epsilon; E is function 

of k. So, we have already seen what is the dimension of epsilon, dimensional epsilon is, 

and this we have seen the dimension as we have given is L cube T to the power minus 2. 

Now, k is dimension of course we know is 1 over L. Now, all you will have to do is dual 

element of dimensional analysis. Those (( )), this is it that this in the inertial subrange, 

energy spectrum is given by this. This is a fantastic result; very simple and approach but 

very far reaching in consequence. What you find that in the inertial subrange, the energy 

varies as k to the power minus 5 third. 

So, this is the result by which the whole community swards that we have a inertial 

subrange in turbulent flow which does not depend on how you put in the energy; how 

you take out the energy. The energy spectrum has a universal future. That future is given 

by its dependence of k by this exponent minus 5 third. So, this is the story that we are 

talking about, but please do understand that this is a story for a 3D flow, because here, 

we are talking about nonlinearity the vortex stretching coming into picture. So, this will 

not be the case for two-dimensional flow. 
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Time permitting we will see that for two-dimensional flow that E of 2 D, that goes as k 

to the power minus 3, and here, what we are seeing is E of 3 D goes as k to the power 

minus 5 by 3. So, the, do you understand that if you have a way of measuring the energy 

spectrum and we look at different k range and you see, what kind of slope it has? If it has 

a slope of minus 5 third, you can see three dimensionality is important, and if you see the 

slope has minus 3, then two-dimensional aspect of the flow is important. And interesting 

part is what you know? 

You look at our weather system, you will find out. First, you get this - k to the power 

minus 3. So, whether prediction actually survived by treating this flow problem layer by 

layer. So, in that each layer, it is a kind of 2 D problem. Three dimensionality is stack 

one over the other. So, it is like your onion peal; you can peal out one layer over the 

other but mostly the dynamics is dominated by this two-dimensional motion. Anyway, 

that is what is also the reason you know why water wave equation play such a central 

role in weather prediction shallow because that defines in two-dimensional motion in 

that plane. 

So, what we have now? We have learn something very interesting about turbulence that 

we have a inertial subrange in all turbulent flows and that is where we get k to the power 

minus 5 third. However, it gets cut-off at a very high k. So, there is a cut-off scale. What 

it will determined upon by? The rate at which the energy is supplied, that will also the 



rate at which it is dissipated and also it should depend on the property of the flow, and 

what better quantity of that is then a kinematic viscosity itself. 
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So, this cut-off scale must depend on epsilon, and so, now I think we have a fairly a 

decent idea. What happens in a turbulent flow which we get by very little investment? 

We have mostly dependent upon dimensional analysis and we have say something which 

are very true that, if we have a statistical equilibrium steady state, then the energy that 

comes out here cannot recite there because the importance of the role of nonlinearity 

versus the viscous term. In this small k range, nonlinearity is important; that pushes the 

energy to higher k and it keeps on going, and somewhere down the line, it must 

dissipated itself into thermal energy and that is what we are talking about. At there is 

something if I am plotting this k and there is some k cut-off, I will call it as K c. 

This cut-off scale will depend upon the rate at which the energy is supplied or taken out 

and also the material property in the fluid property. 

And what is this fluid property that we have already seen, that is Reynolds number in the 

problem. Reynolds number directly incorporates is the kinematic viscosity. So, what 

happens is this cut-off scale can then change. What happens? If the value of reynolds 

number is large, we can actually go to much higher k. The smaller at the reynolds 



number; that means larger of the value of nu. It has to end earlier because that is where 

viscous dissipation takes over. 

So, this is something that we must keep in mind that this cut-off scale will become 

smaller if we either increase epsilon or decrease nu. Increase epsilon means what? I am 

putting in more energies. So, I am allowing it to go for larger range of k. Increasing nu 

means what? I am talking about higher and higher Reynolds number problem. So, that 

allows me to sustain larger rates of strains. So, that also allows into go there. So, that is 

precisely what we have stated out there. 
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Now, what you do is we have epsilon; we have nu; we have seen the dimension. We 

have the epsilon here; nu dimension is given by L square by T. So, what I could do is I 

could use it to define a length scale or which I call as lambda k that I am going to divide 

purely for epsilon and nu whose dimensions are given, and if we look at this, this is the 

only possible combination that you can take. So, basically that is what we are going to 

see that this lambda k is c k times nu cube by this thing. 
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So, that is rather interesting. This is what exactly we are saying that how far we go this k 

c. Kc is what? If I look at this k c, k c is the wave number. So, that will be 2 pi by 

lambda k, the corresponding wave length. So, that lambda k the length scale in terms of 

nu and epsilon would be written like this. 

So, what we are talking about? We are trying to estimate how far we can go and that is 

what Kolmogorov's said that at that scale, at the cut-off range, everything would be 

determine by epsilon and nu, and then, the corresponding length scale is this. You can 

obtain a corresponding velocity scale exclusively in terms of nu and epsilon. You can 

construct a time scale exclusive again in terms of nu and epsilon. So, we get this through 

scales that more or less defines everything. Is not it the way we have been non-

dimensionalizing Navier-Stokes equation? What we needed there a velocity scale and 

time scale and a length scale. So, we have all through of them. 
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What is interesting is sometimes of course what we have done? We have converted the 

velocity scale and length scale into a time scale. We can do that, but here, we are talk 

about, let say these three things are independent. If it is indeed so, I could construct also 

a Reynolds number. This Reynolds number is not the flow Reynolds number. This 

Reynolds number is the one where I have taken a velocity scale which I am calling as v; 

the length scale as a lambda k and this is nu, and the velocity scale, we have seen in the 



previous slide. We have seen what is a lambda k scale substituted there and then we get 

this. 

So, lambda k was in terms of a undetermined constant C k which is of the order 1, which 

has to be order one the way we have reasoned out. So, what we are finding that Reynolds 

number is order one. What does mean? We roughly speaking we always estimate 

Reynolds number as a kind of a relative weightage between the convection term; it is a v, 

a viscous term. So, if Reynolds number is 1, so, this is the scale at which the viscous 

terms are as important as a non-linear term. 

So, these scales where the viscous effects are as dominant as this is what are called as the 

Kolmogorov Microscales. This is where we can go at the most given a flow field, given 

the flow property, you can go up to maximum Kolmogorov microscales, and one of the 

thing properties of turbulent flows that we discussed remember, we said that is 

microscale is compared to molecular dimensions it is significantly larger. So, 

Kolmogorov microscales are still much larger compare to your molecular dimensions, 

and that is why we can actually view turbulent flow in terms of Navier-Stokes equation 

itself, because the smallest length scale those are exited. They are significantly larger 

than the mean free part and that is one of the reason that we do use the Navier-Stokes 

equation as the governing equation for. 
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So, now, we have a very decent view of the energy spectrum that we can obtain this 

energy spectrum by equating rate of energy supply to rate of energy dissipation and this 

was a kind of a equilibrium condition proposed by Kolmogorov and this is goes by the 

name universal equilibrium theory of Kolmogorov. It is not necessarily the true that as 

simply as we have done in terms of dimensional analysis. Kolmogorov (( )) with 

statistical physics; so, that is the much beyond the scope of this course. We will not talk 

about it but we have the just of it in front of (( )) we can see. Based on this scaling 

theory, we can sketch the energy spectrum as a function of wave number for 3 D flows. 

In turbulent flows, the waves numbers are excited over a broadband, and this is what you 

can see. See what happens when we talk about laminar flow, we then get to see 

something like this. We may get one peak here, another peak their and another peak 

there. That is what you see. You have very discrete peaks not wide band spectrum, like 

what we are seeing here, it is not a broadband (( )). 
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So, basically this broadband is also quite important because what happens is we are 

going to plotted like this in a log scale. That is the way we are going to plot the energy 

spectrum will log log plot. What is happening energy also spans over many decades, and 

so, is the wave number. Think of nothing better than, say our weather system. The largest 

length scale that you can think of is the peripheral. If you circumvent, we get the whole 

world. So, it is a, to buy in to 6,000 something. So, it does work out above 24,000 

kilometers something of that kind. 



And at the small scale, you can see even when a leaf is squealing in the wind that is the 

smallest scale that you can see think of. So, you can think of this huge range of scales 

that you can think off coming from a few centimeters or even millimeters all the way up 

to 1,000 of kilometers. That is why we plotted in the log scale, and this is how it is. If 

you are looking at a three-dimensional flow, this is how it should be. This is your inertial 

sub range where the dependency upon on like this k to the power minus 5 third and this 

is where you are pumped in all the energy. This is how the turbulence is created. 

I put in body that is where I put in the energy. Energy migrated along this and got 

dissipated in Kolmogorov micro scale. So, that is what you see that this cross belongs to 

log two pi by lambda k. This is your log of two pi by L characteristic dimension of the 

problem. Talk about flow positive chimney, it is a diameter of the chimney. Flow 

positive aircraft wing, it is a cord of the wing. So, it is that kind of thing that you talk 

about the outer scale or characteristic dimensional larger length scale, and the smallest 

length scale is to determine the Kolmogorov dimensional scale. 
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Now, what we could do is we could talk about little bit about the future of this energy 

spectrum. The inertial sub range has universality only when you are talking about really 

high reynolds number because flow has to suffer those instabilities to go from laminar to 

turbulence flow, and you do need to have a significance stretch where this is independent 

of what is happening on this side and what is happening on that side. What happens if I 



look at a low Reynolds number turbulence flow, it could be something like this. So, this 

dynamic range probably comes down by relative factor 100 of factor of 1000. 
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So, low Reynolds number flows, you may not actually even get this part that k to the 

power of minus 5 third, whereas the structure at the low wave number is non-universal, 

the details depend on high usage of flow. That is what we are talking about. However, if 

I had looking at the viscous cut-off that actually cuts-off the energy, that is determined 

by Kolmogorov’s theorem. 

So, at least three things we have and two are kind of determine if reynolds number is a 

high. One is of course the micro scale and the second is inertial sub range. What happens 

in the low scale range? We have no idea because it is flow dependent. We are going to 

have different flows; we will have different. 
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Now, this is one thing that I wanted to talked to you about - it is about the necessity to 

view the dissipation spectrum. There is also you can look at in the k space, and this is 

quite straight forward dissipation is if you recall nu times the grad u square. So, that was 

nu times k square E k. If you look at this, you can very clearly see. That is what have 

written here that D is proportional to nu times grad u square; grad u itself is k u hat of k. 

So, D is then propositional to nu k square this. This itself is like your E of k u hat square. 
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So, that is what we are saying that D k goes like this. So, what happens is if I have the 

energy spectrum sketch from there, I can also work out the dissipation spectrum. That is 

the relation given there and this is what we can also see that, we can plot the energy 

dissipation which is given by nu times the fluctuating strain rate. So, that is your D k E k, 

that is the definition of D k. So, basically done I can see what D k is? D k is nu times k 

square E k. That is what we are going plot. 
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This is how it is going to look like. It is a kind of a sketch; so, do not take too 

figuratively. Now, how do you get? What did we write there? D k goes as nu k square E 

k. Now, what is E k? E k we have just now seen goes like this in the inertial range. So, in 

the inertial subrange, what do we get? D k goes as nu k square and E k is k to the power 

minus 5 third and of course those epsilon terms is there. So, that is of the issue but you 

can see D k then goes as k to the power plus 1 third. So, that is what you are seeing here. 

In the inertial subrange, it goes as k to the power 1 third, and at the low k range, that we 

already seen, we have said that is the place where viscosity is not important; so, behalf it, 

it is negligible. So, it kind of starts off from where the flows begins, it picks it up, but in 

an inertial subrange, it goes up as k to the power 1 third, and then, again it is all lost to 

due to dissipation. So, that is at the Kolmogorov scale. 
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So, what you find is this. This is a very instructive picture which many people do not 

keep track off is, if I plug this as E of k, so, if this is my E of k which goes like this; my 

D of k goes like this. So, you see, when you are, let us say trying to compute, this is 

important in computation that people tend to think that I will do earliest, and all I need to 

do is worry about E of k. I will short circuit this E of k somewhere and I say how I am 

doing it, but people do not talk about what they have to do correspondingly to the D of k 

but the D of k as this structure. 
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D of k is more important may be in the scale which is beyond this. So, that is set your 

submit scale. So, think of the submit scale modeling, it is not a trivial exercise. You will 

have to model it appropriately so that it mixes that D of k property. So, this is something 

one must do when you generate a submit scale model for l e s. Make sure that at least in 

the inertial range, it should have this kind of attribute. If it is not, then you have a very 

poor model. 
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So, this is your dissipation spectrum and we can do all kinds of things. We can play 

around with all this numbers that we have seen, and epsilon we can use this previous 

equation that we can now talk in terms of the range where it is becoming important. So, 

D of k we have obtain. So, I substitute D of k expression here and integrate over all 

possible k, and k now goes from 0 to 2 pi by lambda k, that is a Kolmogorov's length 

scale and I get this.  
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Already we have seen that lambda of k goes like this. This is your Kolmogorov length 

scale that we have obtain from dimensional argument. So, we can plug this last 

expression in the previous one, and what do we get this C of k, they are lots of floating 

constants that we are talking about. So, C of K, this lower case c of k is related to capital 

C of k is like this. So, what do we mean is there are not too many c of ks that you will 

have to be looking around for. Now, there is a unique relation between the two. If you 

obtain one of them, the other one gets frozen. That is that we are saying this floating 

parameters determine by some experiment or by some statistical analysis, tools, etcetera. 

Now, we have talked about that Kolmogorov’s spectrum allows ask to define a Reynolds 

number, because it provides a velocity scale by this following parameters – epsilon, nu 

and the length scale L. The velocity scale is obtained from the total kinetic energy per 

unit mass. That is quite easily understood. 
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So, that is given according to this, and then, we find that this is your specific kinetic 

energy that is by definition given by this E of k d k and this E of k I have already gotten 

that expression I substitute it there. So, I find U goes like this. So, if I look at Reynolds 

number, that is, UL by nu, it goes like this. So, we have obtain the value of epsilon in 

terms of Re here and I can now plug it in back into the expression for lambda k, that goes 

as this. I think I will stop at this point. Tomorrow I will take first few minutes to expand 

up on this, and then, will have our general discussion session.  


