
Instability and Transition of Fluid Flows 
Prof. Tapan K. Sengupta 

Department of Aerospace Engineering 
Indian Institute of Technology, Kanpur 

 
Module No. # 01 
Lecture No. # 28 

 

(Refer Slide Time: 00:45) 

 

So, we had been discussing about disturbance growth in shear layers, and we had 

generally classified the problem into two aspects that for the sake of mathematical 

simplification, that the growth is either in space or in time. And, there were some 

examples given. So, we have been looking at disturbance growth either as a spatial 

problem or as a temporal problem and one of the example that attracted us most was this 

external flow, where we saw through a lots of tests and trials that there are situations in 

external flows where you do indeed see disturbance growth in space. 

Now, that explained, most of the time, you know, like, I had explained to you about the 

paper by Trefethen and his co-authors, who pointed out that for shear-driven flow, it 

looks ok, but even then, it was said that Blasius boundary layer was not a very good 

example where spatial growth was seen. So, people did talk about, from this classical 



approach where we either look at spatial or temporal growth; there was this other part, 

where we did talk about the bypass route, classical and bypass route. In bypass route, of 

course, we accepted that things can happen simultaneously in space and time. 
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However, in those cases, where you do indeed see spatial growth, you also see at times 

that, there are simultaneous transient energy growths. While this transient energy growth 

was projected as one of the most rival route of bypass transition, what we started 

discussing before the break is that, even when we have strictly spatially defined problem, 



we do see associated transient growth. And, this following part, we are basically talking 

about a spatio-temporal growth which is observed directly via linearized receptivity 

analysis of Navier-Stokes equation. And, this is not something new, which we have done 

for quite some time. The only difference between what we studied here and the rest of 

the studies, in the context of spatial growth is, we treated the problem as a fully time 

dependent problem. 
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So, we introduced what is called as a Bromwich contour integral and in this Bromwich 

contour integral, we approached the problem in the same way as people have been doing 

using Orr-Sommerfeld equation, but with a difference that, we have to take the contours 

simultaneously in both the wave number and circular frequency plane. This has been 

followed up in recent times also and a very special property of the shear layer was noted 

that, when you do indeed perform a full time dependent receptivity analysis, rather than 

the spatial stability analysis, you do see that, there are multiple modes; there are more 

than one modes. 
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While the spatial stability theory looks, focuses upon only the dominant least stable 

mode, but in this approach, in Bromwich contour approach, you do track the presence of 

multiple modes. And, what was noted, this curious observation that we are talking about 

that, this multiple modes, at the onset time of the problem itself, can give rise to transient 

growth, which will grow in space and time together. And, this is what we had started 

discussing about. Well, when you do have some such thing happening, multiple modes 

interacting with each other, then, you start questioning the validity of normal mode 

analysis; because in a normal mode analysis, you only study one mode at a time, without 

any recourse to having various modes interacting. 

When you have multiple modes interacting, then, of course, Bromwich contour integral 

becomes a very natural choice, and the most interesting aspect of this is that, the results 

that you obtain is not restricted to only two dimensional flow or three dimensional flow. 

If you recall, the earlier work on transient growth by various groups who talked about 

non-normal modes, they showed such a mechanism only for three dimensional flow. So, 

let us try to see, if we could explore this in the context of two dimensional disturbance 

field itself and then we can notice this.  
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Now, we do actually adopt the transient energy growth route, starting from what we have 

developed in describing bypass transition in terms of disturbance energy equation, that I 

have written it down for your reference, which we have done in the previous set of 

lectures, which showed that, if I define the energy itself, as like a Bernoulli’s head, that 

we have talked about before, then, I can split this energy into two parts, the mean part as 

well as a disturbance part, and here, we are talking about the disturbance energy. So, if I 



split this into a mean part and a disturbance part, then, we did show the governing 

equations for disturbance energy is given by this equation. 

It is basically, a sort of a boundary value problem, because the energy is given by the 

Laplacean operator, which is shown here to arise from various interactions of the mean 

and disturbance field; subscript m refers to the mean field; d refers to the disturbance 

field. And, some of the terms are of the lower order, for example, this one and this one. 

So, even if we throw them away, what we notice that, the evolution of disturbance 

energy is given by how mean and disturbance vorticity interact with each other. How 

basically, the mean flow interaction, the ((helicity)) of the flow that is the curl of the 

vorticity field. And, also a similar complementary term, which tells you of the 

disturbance velocity, sort of takes a dot product in the ((helicity)) of the mean flow. 

What is the mean flow, what we are studying? We are studying a very simple problem 

here. We are studying the prototypical flow, that has dominated this field, that we are 

talking about, say zero pressure gradient boundary layer, which was originally studied by 

Blasius. And, if we neglect this part, where significance growth of the shear layer takes 

place, then, we can treat this boundary layer to be almost like a parallel, without any 

growth and for such a boundary layer, I could talk about a mean velocity profile, which I 

am calling as V M and that is given by this; this is your parallel flow assumption. So, this 

is your parallel flow assumption. That is, what we are in essence saying, the shear layer 

does not grow with x very much and then, we substituted that in linearized vorticity 

transport equation to get the Orr-Sommerfeld equation that we know. That was the part, 

that defines this disturbance field amplitude, because this is governed by our Orr-

Sommerfeld equation. 
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Now, what we are actually attempting to do here, is to show that, the viscous instability 

theory as given by the Orr-Sommerfeld equation and as given by this disturbance energy 

equation are equivalent. That is one of the thing, that we want to show, simply for the 

reason, it is a kind of a sense of completion, that I am discussing this with you; because, 

this equation that we have written here, is a product of the full Navier-Stokes equation. 

We did not have to do any approximation, any assumption, unlike Orr-Sommerfeld 

equation. Orr-Sommerfeld equation is a restricted set of equation, because, it assumes a 

flow to be parallel. And, it also, of course, neglects all the non-linearity, whereas, this 

equation, disturbance energy equation that we have developed, we do keep the scope for 

including the non-linear term, which has been underlined here. 

We can keep them or we can study the linearized part, but then, if I am looking at the 

linearized part of this disturbance energy equation, that must have all the seeds of the 

Orr-Sommerfeld equation and that is what we are talking about. Now, there are this 

historic legacy of studying energy propagation equation for flow instability. There were a 

couple of earlier attempts by Reynolds and Orr, who studied the kinetic energy only; 

whereas, we are talking about here, not only the kinetic energy, but the pressure head 

too, and in the absence of any other body force, this constitutes the total mechanical 

energy. 
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So, this is somewhat more inclusive, than what was attempted there. Well, it was, been 

discredited later, in these following work, where they say that, of course, the results that 

you get out of such analysis, the critical values of the Reynolds number, etcetera, they 

are indeed, very low. So, what you do is, you start off with the momentum equation and 

take a dot product with the velocity field to get this equation. And, this forms the basis of 

Reynolds-Orr energy equation. So, we did see that, it has a time rate of kinetic energy 

here. What is this? This shows how the Reynolds stress interacts with the mean shear. 

This is the viscous dissipation term and this is the gradient transport, because it is written 

as a sort of del del x j of a term. 
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So, this was the starting point of the equation. There is nothing wrong up to here, but 

subsequently, what people did, they did study this with the assumption that, if you are 

looking at any disturbance field, it is either very localized or spatially periodic, and then, 

what happens is, then, those gradient transport term drops out. So, the gradient transport 

term drops out, leaving you with this equation. And, these are those dissipation, sort of 

balancing your interaction of the Reynolds’ stress with the mean shear. But you realize 

that, this is, in a sense, if you are looking at the energy equation for the disturbance, then, 

this quantity, the mean quantity, mean shear, is already known.  
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So, what you are looking at is a kind of an equivalent linearized version, because, this is 

a second order tensor; so is e v; that is also a tensor. So, in terms of that second order 

moment, this is a linear equation and what has happened, in making that assumption that 

the disturbance field is localized or spatially periodic, we have actually thrown the non-

linear term, the initial term. And, this was pointed out by Lin and Stuart and they said 

that, of course, the critical Reynolds number obtained for many of the flows were too 

low and of course, that was tracked to elimination of non-linear terms, that we lost, when 

we made that localized or periodic assumption. 
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However, in contrast, if we look at the disturbance mechanical energy concept, that we 

have written there, the non-linear terms are very much there. You can see the non-linear 

terms can be kept, if we want to; however, even this terms also originate from the non-

linear convection terms. So, they do not simply go away. 
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So, the non-linear contributions are kept intact in this instability study and this energy 

based receptivity analysis is all-inclusive, because it is based on full Navier-Stokes 

equation. 
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Now, let us spend a little time in understanding how we go about it. Well, how we go 

about it is the following; we define the disturbance field in terms of a disturbance stream 

function with a Fourier-Laplace amplitude and please understand that, psi d, I have 

written it as a vector, because if I have flow in the x y plane, psi is in the k plane. So, that 

is what we have done, because, with the help of such a vector notation of psi d, I could 

obtain the disturbance velocity. Disturbance velocity is nothing, but the curl of psi d. 
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So, that is what we do. And then, having described the mean flow and the disturbance 

flow, we can take a curl of this velocity fields and get the vorticity components. So, we 

can, perhaps, get everything in there. Now, if I am looking at the Blasius boundary layer 

problem with a parallel mean flow assumption, then, in terms of those wall modes, phi 1 

and phi 3 are the wall modes, because they are the ones that will decay with the height; 

that means, if I excite the flow inside the shear layer, this disturbance stream function 

can also be written down like this; and you can identify very clearly, the dispersion 

relation appearing in the denominator. And, this is the type of input, the excitation field 

that we give. 
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We have talked about various kinds of possibilities and we can talk about, a sort of a 

impulsive excitation, as we have done for impulse response; or we could take a strip 

excitation, we can take Gaussian excitation; all kinds of things have been discussed. 

And, these equations have to be solved, subject to the various boundary conditions and in 

this case, please do understand that, we are interested in space-time dependence. So, we 

cannot just simply take the signal flow route, signal problem route, where we just simply 

say that, time dependence is as given by the imposed harmonic excitation, but we do 

need to start the problem at a fixed time. So, basically, that is where this Heaviside 

function U of t comes into picture; that tells you that, this problem was started at a finite 

time. 
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So, we basically solve this problem. We have this Blasius profile on the mean flow like 

this, and let us say, we position the exciter at a location like this, and so, we consider as 

if, this actual shear layer is replaced by an equivalent parallel shear layer with the same 

thickness, at the location of the exciter; and then, we study. This is interesting because, 

without this frame work for a parallel flow, we do not have wherewithal to prescribe the 

origin. Now, we can even prescribe x origin for the flow, at the location of the exciter. 

We can also start off to give a meaning of what t equal to 0 means; t equal to 0 means, 

when we start the experiment, when we start the excitation. 
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That is how we got that Heaviside function coming through the boundary condition. And 

then, the governing equation can be simplified. This is quite well known. 
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Now, what we do is, try to understand this problem, the dynamics, by this Bromwich 

contour integral, by taking various points and this is what we did. We took four points. 

For various reasons, we will see why we have chosen these four points. Well, we, first of 

all, we wanted to keep the Reynolds number constant and along this Re equal to 1000 

points, we have chosen three points. The point A corresponds to where we expect the 



leading mode, the Tollmien-Schlichting mode to be unstable; that is what the point A 

represents. In addition to this Tollmien-Schlichting mode, we will have additional stable 

modes. The point B actually, corresponds to one such case, where we do not have an 

unstable quantity. 

So, this is on the higher frequency side. If this was, A was for 0.1, this is 0.15 and here, if 

we do a, sort of a stability analysis by grid search method, we will find out the various 

modes to be stable. In contrast, we are looking at the point D which is also spatially 

stable, but which is very close to the neutral curve. See, here, if I create a excitation 

corresponding to this parameter, I am going to see a disturbance field, which is hardly 

decaying. Finally, this point C, which is far upstream of the neutral load, it corresponds 

to a case, where the Orr-Sommerfeld equation does not predict an instability at all, for 

any frequency. 
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So, these are the four points that we had studied and the Bromwich contour, I explained 

to you in the last class also that, theoretically speaking, in the alpha plane, you would 

like to take it from minus infinity to plus infinity; and because, we are looking at the 

asymptotic part of the solution, for which alpha could be very small. 
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So, this values, like plus minus 20 along the real axis… So, we take four representative 

points; A is the unstable TS wave point. So, one of the mode is decidedly unstable; 

whereas, B represents a point, where all the modes are stable and they are away from 

neutral curve. So, the decay rate will be significant. In contrast, point D is also stable 

point, but it stays very close to the neutral curve. 
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So, you may see the resultant disturbance field, may have a sustained a signature of 

disturbance. Finally, point C corresponds to the case, where it is significantly ahead of 



the neutral loop, implying that, here, all the frequencies are stable. And, we did talk 

about, in the last class also that, we have to choose the Bromwich contour, for any point; 

will have to choose the point in such a way that, all the downstream propagating modes 

should be above this Bromwich contour in alpha plane. So, that is what we did. We 

chose a Bromwich contour, which is 0.009 below the real axis and it extended from 

minus 20 to plus 20, in the direction parallel to the alpha r axis. So, that was your alpha 

Bromwich contour. Similarly, the omega Bromwich contour, we have to take it, it should 

be placed so far above, so that, any mode that are there, they must be below; because, 

you know that, this is coming with a minus sign here. So, all the modes have to be 

causal. So, we cannot have causality violated; that is why, we do indeed, place the 

Bromwich contour in the omega plane, at a height significantly higher, compared to what 

we took in the alpha plane. 

So, this is at 0.02 and here, we have once again, taken a range of minus 1 to plus 1; 

whereas, the, for other part, the Bromwich contour, the alpha plane, remains more or less 

same. We could actually bring it closer to the alpha r axis, because we know that, 

unstable mode is not there. So, we can bring it closer to the alpha r axis and the omega 

axis will remain the same. 
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So, there is no such change for the omega contour. Now, this will perhaps, give you an 

idea of what kind of effort is needed, even in solving a linearized Navier-Stokes equation 



with adequate accuracy. For example, in the alpha plane, we have taken 2 to the power 

14 terms. So, that is, sorry, 2 to the power 13, 8192 equidistant point in the alpha plane. 

And, we had taken 512 points in the omega plane. And, this was what we did in a 2006 

work and you understand that, in the shear layer itself, we have gone only about 7 delta 

star; we have gone a distance from the wall to 7 delta star and we had taken 2400 points 

for the Orr-Sommerfeld equation. And because we are used a Runge-Kutta method, so, 

we had to take the mean flow, which should be having twice the number of points. So, a 

Blasius boundary layer, with 4800 points has been obtained. 
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So, this is the kind of effort that is needed and if we perform a stability analysis, purely 

spatial stability analysis, then, we get the properties of this four points as indicated here. 

As I mention to you, the point A was inside the neutral loop. So, it has a unstable mode; 

you can see it from this sign, minus 0.007289 and that would also tell you, why we chose 

the Bromwich contour in the alpha plane; that was at minus 0.009. We wanted to keep 

this mode above the Bromwich contour; that is what we had done. The corresponding 

alpha r is given here. It is about 0.279. So, as these are given in terms of delta star, you 

can see what kind of wavelength we are talking about; it is of the order of tens of delta 

star.  

Now, the other two modes that you get from the spatial analysis, A2 and A3, they are 

stable and you can see the growth or decay exponent is significantly high. So, if this is 



minus 0.007, it is plus 0.1. So, it is almost like 14 times, 15 times higher and this is even 

higher. The wavelengths are almost like, half of it; wave numbers are half of it; so, 

wavelengths are double. So, these are much more longer waves and if you calculate the 

group velocity, this is what you get. The group velocities is of the order of above 40 

percent of the mean flow. Please be careful about this; this is what is called as signal 

speed; this was what was defined by Sommerfeld. He wanted to identify the wave 

propagating disturbance in terms of a signal and that speed is indicated in this column. 

And, this is the energy propagation speed that would come along, when we formally 

apply the disturbance energy equation in terms of e d. 

So, this two columns, let us not worry about; as we go along, we will signify what they 

are. For the point B, which was at, corresponding to omega equal to 0.15, we still have 

three modes; but all three of them are stable. And the least stable is 0.01, so, that is, you 

can see, it is a quite significantly damped solution. The group velocity ranges are 

different, but the leading mode has almost similar group velocity, like the unstable 

modes. The point C, corresponds to the one that is far ahead of the neutral loop; and you 

can see the, here, the decay rate is, decay exponent is even larger compared to the point 

B. And, point D is the one, that we chose at 0.05, omega equal to 0.05, which was sitting 

very close to the neutral curve and that is what you indicate; you see that, the decay 

exponent for the leading mode is quite small 0.001; whereas, the other mode corresponds 

to this. 
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Now, if we keep this in mind and try to perform the analysis, we can figure out the 

various kind of solutions that we get. 
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This is what we are seeing here, if we do that Bromwich contour integral; obtain the phi 

and from the phi, we do double inverse transform to get psi d; and from psi d, I can 

obtain the V d. So, the V d has a component, which is a stream-wise component u and a 

wall normal component v. 
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So, this u is plotted here. So, for the point A, for which the circular frequency was 0.1, 

the solution is shown here, at a significantly large time, t is equal to 801 and what you 

see, is basically this; that you have a local solutions and so, if we do the Bromwich 

contour integral method study, then, we saw the Orr-Sommerfeld equation along alpha 

and omega plane; and we do get the value of phi for those values of alpha and omega. 

Then, we perform this double inverse transform here, to get psi of d. Then, we would 

take a curl of psi of d to get the disturbance velocity. 
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And, the stream-wise component is u that is shown here, point A. For point A, which 

corresponds to omega naught equal to 0.1, shown at a significantly larger time, t equal to 

801. Please do understand that, in the omega plane, we have taken 512 points. So, if I 

define my omega range from minus 1 to plus 1, then, what have we got? We have gotten 

the delta omega; we have the range; we have the number of points; we got delta omega. 

And, from (( )) limit, we can convert it into the corresponding t max; what is the 

maximum time we can get and that is what you are seeing here. So, if I take only 512 

points, I can go only up to 801. And, if I have to take more number of points, for a longer 

time, then, I have to take more number of points. 

So, this is the trade off that you will have to understand. At those times, when we were 

working, this was the limitation of our computer. What we notice is, of course, is a local 

solution, followed by a asymptotic solution here; and the asymptotic solution is followed 



by a front, which decays. And, this is what we would expect, because this is nothing, but 

a wave packet. We are studying it as a spatio-temporal entity and we see that, the 

disturbance at a finite time, can only reach up to a finite disturbance, a distance. If I were 

to take more number of points, so that, I can go to much larger t, I would perhaps, see it 

would fill up the whole domain. 

So, that is what we do, see. So, this is what you see for point A; but however, when you 

do it for point B, this is how the flow really works; and according to our spatial stability 

analysis, this was a perfectly spatially stable system and that is what we are seeing. The 

asymptotic part is strictly decaying; however, at t equal to 450, and at t equal to 801, we 

do sees this wave-front and this wave-front, actually increases with time. And, this is 

something that was not understood before. Now, you can note that, for both this points A 

and B, we have done the simulation for Reynolds number of 1000 and we do get, at the 

identical time, almost a similar wave-front. 

So, the question is, whether the spatio-temporal wave-front that we are seeing, is a 

function of Reynolds number or it is due to interaction of multiple modes, is something, 

that is an open question at this point in time even. And, this solution that we are showing 

you here, has been obtained for the point at the inner maximum. Inner maximum is about 

quarter of a delta star; that we have seen for this Reynolds number case. 
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Now, that is what we discussed it, for the point A; receptivity solution is dominated by 

the leading unstable mode, without any effect coming from the damped part on this 

solution. We did not see any moderation, because, we have the solution. So, we could 

calculate its growth rate. 
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We can do it. And, we have done that; that helps us in making that last statement that, the 

growth rate matches exactly what is given by the first mode. So, the second and third 

mode does not give as much, in terms of the disturbance flow quantity. If you look for 

the point B, the asymptotic solution is once again due to the first mode and the growing 

wave-front, interestingly enough, the alpha r, the wave number of the wave-front, 

matches with that of the second mode. Effect of the third mode is not at all seen for the 

point D; not in terms of alpha i or alpha r. 
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So, basically, this forerunner that we see, it continues to grow spatio-temporally, even 

though, the other part, asymptotic part of the solution decays. And, this is something 

interesting, that we need to understand. We do make an observation here that, the case 

that we see, that the necessary condition for the creation of forerunner, is found by 

looking at the receptivity solution for the points C and D. For point C, we have a single 

stable mode and later, point D, we have two damped modes. For point C and point D, the 

solutions look like this. For point C, we do not see any wave-front. 
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But please do understand, this is at a different Reynolds number; whereas, for point D, 

we have two modes; both are damped. But we do see a kind of a spatio-temporal 

growing wave-front. This is somewhat tempting; for 1, 2, now, conclude as if, that a 

necessary and sufficient condition for this spatio-temporal wave-front or the forerunner 

is that, you must have more than one mode; because, for C, they have a only single 

mode. At the same time, we must also keep the option open of future studies, where one 

should study a similar analysis, do a similar analysis, for different Reynolds number 



cases; because for point C, although we have a single mode, but this is also done at a 

very lower Reynolds number. So, this spatio-temporal growing wave-front, is this a 

strong function of Re, so that, when you reduce Re, it decays, or it is due to some kind of 

interaction of multiple modes; this is something that we need to understand. So, you 

know, this is what we observed that, the spatio-temporal front for the case B has a 

wavelength of B2. Whether this is just a pure coincidence or it is because that mode 

becomes important, is something that has to be further more studied in greater detail. 
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However, what we can say or do at this point in time is, to note that, if I depended solely 

upon this spatial stability analysis, then, of course, I would not be able to get the spatio-

temporal front. The spatio-temporal front is obtained because, we performed a Bromwich 

contour integral method; because we treated the problem as spatio-temporal problem. So, 

that is something that, we must…And, we must further probe, at multi-modal solutions 

of Reynolds number, with Reynolds number and then, try to see, what is the propagation 

property of this spatio-temporal wave-front. This is a major, outstanding problem that 

needs to be really studied. 
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Now, next, what we want to study that, supposedly that spatio-temporal wave-front is an 

attribute of, a function of Re, and multiple modes are not so important; let us say, we 

grant that. but then, we want to study a case, where Re is, of course, greater than Re 

critical and then, we will consider the response of the system, where circular frequency 

has a bandwidth and in this bandwidth, all the frequencies are unstable. And then, what 

will happen? Because of the way we write it, they will mutually interfere; and now, this 

interference is both in alpha and omega plane. And, this is what we need to study. Let us 

try to find out what happens. 
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Now, although we make this observation, but we could keep our options open; however, 

we just simply mentioned that, the growth of the forerunner is, due to probably this 

multiple modes interacting with each other and they probably add to the phase. You 

know, this is what is the concept of groups, and this has been going on from the time of 

Hamilton and Rayleigh and so on and so forth, all the way up to the nice monogram by 

Brillouin. And, we talked about the properties of forerunner, which was studied by 

Brillouin for electrodynamics problem. The propagation speed of the signal has been 

variously defined by group velocity, which we adopt in our case; signal velocity by 

Sommerfeld and energy transfer velocity by Brillouin. Brillouin noted that, the three 

definitions are identical, if we are looking at non-dissipative system; but here, of course, 

our study involves dissipative system, because we are looking at viscous flow. 
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So, this does not hold. What was noted by Brillouin that, for electromagnetic waves, this 

forerunner is very weak, in case of stable system; only it can attain high values, when the 

group velocity is minimum. Something probably related to what people later on called as 

the absolute instability. Indissipative systems, this three velocities that we talked about, 

the group velocity, signal velocity, energy propagations, can be different, because we can 

have both stable and unstable modes, existing side by side. 
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So, that is what one can do. Group velocity, we can obtain, as we do here, and shown in 

the table, obtain directly from Eigen value analysis. And, if I look at the signal itself, if I 

plot psi versus d or u versus x, then, I can calculate; I can calculate, let us say, the point 

of maximum, at what speed does it go. That is what we call as the signal speed. And, 

estimation of energy propagation speed, actually, would require that, we study this 

energy propagation equation itself; and this is what we study next. To do that, to develop 

an equation for E d, for this particular case, we can define the disturbance energy also in 

terms of its Fourier-Laplace transform. So, E of d, with a cap, is a strong function of y, 

height over the wall and also is a function of alpha and omega, and which we will 

perform the Bromwich contour integral, to get the quantity in the physical space.  

What is the governing equation for this? Well, governing equation for this is here, given 

in the physical plane. So, now, we can substitute our representation for psi d, V m, E d 

like this and write it down here. Now, you can very clearly see, what is this quantity? 

This is your del square E d. If I take a y derivative twice, then, I will get this E d cap 

double prime; that is your second derivative with respect to y. and, this is your second 

derivative with respect to x, minus i alpha whole square will give you, plus i alpha whole 

square, will give you minus alpha square. And, these all this stops that we see on the 

right hand side, we can open them up and suppose, we have obtained those quantities 

from the Orr-Sommerfeld equation; that is what we have done. So, we can write it down 

here and you can notice that, the quantities that determine the energy propagation is 

dependent on U velocity, the shear, the curvature of the velocity profile as well as the 

third derivative. 

So, this is something interesting, because if you recall that, when we looked at Orr-

Sommerfeld equation, we saw the Orr-Sommerfeld equation depended on the mean flow 

from the definition of U and U double prime. But here, when we are looking at the 

disturbance energy, it not only depends on the mean flow, but it also depends on the 

shear and the curvature and the third derivative of the mean flow. So, this is something 

interesting. 
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Now, this equation that we have just now seen, we can solve it again along Bromwich 

contour in alpha and omega plane. 
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Now, once we have gotten that E hat of d, as a function of alpha and omega, for this 

Bromwich contour, we can do inverse transform and obtain this solution. And, I am 

showing you the solution for that point A and B, in that figure. A corresponds to, in the 

unstable point; B corresponds to the stable point. And, this is what you get. Well, of 

course, for the point B, you do have, from the Orr-Sommerfeld equation at spatially 



stable, that is what you are seeing here also. Please do understand that, when it comes to 

this equation, can you do a stability analysis? 
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See, this comes strictly from the Laplacean and we cannot do the stability analysis like 

what we did for Orr-Sommerfeld equation. This is interesting because, there is, in this 

equation, if you look at, there is, this is the forcing term. So, this is not like your Eigen 

value problem. There is an explicit forcing coming in from here. And, if you look at the 

so called, transfer function here, transfer function does not involve any term related to 

the mean flow. So, stability of what we are studying? See, this is something you must 

understand that, this is a very interesting alternative viewpoint; whereas, in the Orr-

Sommerfeld equation, the governing equation was homogenous; here, the governing 

equation is in-homogenous. In the Orr-Sommerfeld equation, we had a transfer of 

function, which was a function of the mean flow. Here, we have a transfer function, 

which does not depend on the mean flow. So, this is something that is interesting. 
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So, when we study E of d, by this Bromwich contour integral method, it is a very 

interesting thing, because what we are looking at here, is nothing, but a forced vibration 

problem, forced. What is the forcing, that is coming from, how the mean shear interacts 

with the disturbance shear. That gives rise to this kind of a thing. And, despite all that, of 

course, it is excited by the forcing; so, whatever may be the forcing property is, that is 

seen here also. For example, point B was stable; so, we do get a asymptotically stable 

energy. However, we do pick up the spatio-temporal growing wave-front. And, for the 

point A, which was inside the neutral curve, we do have a growing wave-front. And, 

there is this leading wave-front present in both of them. These are shown for Reynolds 

number of 1000 at a height of 0.278. 
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So, this is what we need to study. So, we can make the following observation that, the 

variation that we have seen, E of d versus x, this variation is much smoother than u 

versus x; or we would expect it, because it is squared, V squared term. So, if I have some 

discontinuity in V, when I square it, it would smooth out. Once again, for the point A, 

there is no detached forerunner, while the point B displayed the same detached 

forerunner as before. The rate at which this wave-front propagates, we can work it out 

from the figure itself. And, this was obtained in table one as V e; recall, we talked about 

V e; what was one Relova suggested that, we should also talk about energy propagation 

speed. So, since we have now got energy as a function of x and t, we can calculate this 

speed. And, that is how, it was obtained and it was noted in the table. Then, the system 

dynamics is determined by the least stable mode A1, for the spatially unstable case, with 

all the three definitions of propagation speed producing identical results. That is what we 

saw. So, I think I will stop here. 

So, tomorrows’ or next class, we will be talking about, what happens to this. Then, we 

will make a kind of a grand summary of whatever we have done so far. We have been 

focusing mostly about spatial growth. We will like to see what happens in flows, where 

we instead have temporal growth; that will be out next stop in our journey. 

 


